talnarchives

Une archive numérique francophone des articles de recherche en Traitement Automatique de la Langue.

Utilisation d’indices temporels pour la segmentation événementielle de textes

Ludovic Jean-Louis, Romaric Besançon, Olivier Ferret

Résumé : Dans le domaine de l’Extraction d’Information, une place importante est faite à l’extraction d’événements dans des dépêches d’actualité, particulièrement justifiée dans le contexte d’applications de veille. Or il est fréquent qu’une dépêche d’actualité évoque plusieurs événements de même nature pour les comparer. Nous proposons dans cet article d’étudier des méthodes pour segmenter les textes en séparant les événements, dans le but de faciliter le rattachement des informations pertinentes à l’événement principal. L’idée est d’utiliser des modèles d’apprentissage statistique exploitant les marqueurs temporels présents dans les textes pour faire cette segmentation. Nous présentons plus précisément deux modèles (HMM et CRF) entraînés pour cette tâche et, en faisant une évaluation de ces modèles sur un corpus de dépêches traitant d’événements sismiques, nous montrons que les méthodes proposées permettent d’obtenir des résultats au moins aussi bons que ceux d’une approche ad hoc, avec une approche beaucoup plus générique.

Abstract : One of the early application of Information Extraction, motivated by the needs for intelligence tools, is the detection of events in news articles. But this detection may be difficult when news articles mention several occurrences of events of the same kind, which is often done for comparison purposes. We propose in this article new approaches to segment the text of news articles in units relative to only one event, in order to help the identification of relevant information associated to the main event of the news. We present two approaches that use statistical machine learning models (HMM and CRF) exploiting temporal information extracted from the texts as a basis for this segmentation. The evaluation of these approaches in the domain of seismic events show that with a robust and generic approach, we can achieve results at least as good as results obtained with an ad hoc approach.

Mots clés : Extraction d’information, extraction d’événements, segmentation de textes, indices temporels, apprentissage statistique

Keywords : Information extraction, event extraction, text segmentation, temporal cues, statistical machine learning