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RÉSUMÉ
Développement de modèles vectoriels continus de mots pour le gaélique écossais
Nous présentons ici un projet préliminaire pour la construction et l’évaluation de représentations
vectorielles continues des mots appliquées au Gaélique écossais. Les méthodes de représentation
vectorielles continues des mots ont déjà été appliquées avec succès à de nombreuses tâches en
traitement automatique de la langue (TAL) et ont pour avantage de pouvoir être construites à partir de
texte brut et non structuré. Ces méthodes sont ainsi particulièrement adaptées aux langues faiblement
dotées en ressources linguistiques telles que le Gaélique. Nous avons construit trois différents modèles
vectoriels continus des mots à partir de deux versions d’un corpus de 5.8 millions d’occurrences de
mots (tokens). La première version consiste contient la simple segmentation en occurrences alors
que la deuxième version comprend les occurrences et les formes lemmatisées. La représentation
syntaxique des modèles est évaluée à partir d’un étiqueteur syntaxique en Part-of-Speech (POS).
Par ailleurs, diverses requêtes sémantiques effectuées sur les modèles permettent de mesurer et
caractériser leur richesse sémantique. Les modèles construits à partir du corpus d’occurrences seules
s’avèrent peu robustes aux requêtes sémantiques en raison de la parcimonie des données. En revanche
la lemmatisation améliore la robustesse des modèles pour les requêtes sémantiques mais au prix d’une
sensibilité flexionnelle accrue. Nous illustrons les différences entre les modèles ainsi que l’apparent
compromis entre leurs capacités sémantiques et syntaxiques. Finalement, nous soulignons le potentiel
des représentations vectorielles continues des mots pour toute une série d’applications futures.

ABSTRACT
Developing Word Embedding Models for Scottish Gaelic

We detail a preliminary project on encoding and evaluating word embeddings for Scottish Gaelic. Word
embedding methodologies show promise for diverse natural language processing (NLP) tasks and can
be built from raw, unstructured text. Accordingly, they are attractive for under-resourced languages
like Gaelic. We instantiated three embedding models on two versions of a 5.8 million token corpus :
1) tokenised and 2) tokenised / lemmatised. Using a simple POS tagger, we quantitatively measured
the syntactic similarity between nearest neighbours for each model’s vector-space representations of
words. We also queried the models to assess their semantic specificity and breadth. Models built from
the tokenised corpus exhibited the effects of data sparsity for semantically constrained queries. The
lemmatised versions had more semantic robustness, but at the expense of inflectional sensitivity. We
note divergences between the models and an apparent inverse relationship between their semantic and
syntactic capacities. Finally, we highlight the promise of word embeddings for a range of future work
and downstream applications.
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1 Introduction

When reflecting on the position of our language technologies, it is common for those working
on minority languages to express some degree of English envy. State-of-the-art natural language
processing (NLP) technologies typically require large quantities of labelled training data. These are
readily available for English and other majority languages, but not normally for under-resourced
languages. Yet, as in other data-driven fields, NLP has recently been dominated by approaches
leveraging artificial neural networks. While these approaches do not necessarily mitigate requirements
for labelled data directly, they are attractive for their language-independence and the fact that they
can be generated unsupervised from relatively raw data (Lin et al., 2015; Chen et al., 2013). Large
annotated corpora are unlikely to exist for under-resourced languages, but copious amounts of on-line
text are often available. After light processing, this text can be made suitable for approaches based
on neural networks. As we demonstrate in this paper, useful models can result from modestly-sized
datasets.

A key difference between a neural network and conventional NLP approach is that the former typically
requires words to be represented as numerical vectors. The process of mapping atomic word units
(tokens, lemmas, etc.) to vectors is known as ‘word embedding’. Neural network word embeddings,
or vector space models (VSMs), use high-dimensional geometry to map associations between words.
Embedding algorithms exploit the iconic relationship between semantics and linguistic context,
typically mapping similar words to nearby vector points. The underlying principal recalls Firth’s
observation that ‘[y]ou shall know a word by the company it keeps’ (1957 : 11). Although vectors are
difficult to interpret — each dimension represents multitudinous concepts and concepts are spread
multi-dimensionally (Al-Rfou et al., 2013) — word embedding models have proven effective as input
to a variety of standard NLP tasks, such as part-of-speech (POS) tagging (Fonseca et al., 2015).

Given the above characteristics and possibilities, word embedding models could be useful for work
involving Scottish Gaelic (Al-Rfou et al., 2013). Although improvements have been made to Gaelic
language technology in recent years (see Batchelor, this volume), it still lags behind that of most
larger languages and even some minority languages (e.g. Irish Gaelic). We present this paper as proof
of concept in the interest of using word embeddings methodologies to expedite the development of
Scottish Gaelic NLP resources. In the sections below, we overview our methodology, provide an
initial assessment of the models’ strengths and weaknesses and comment on potential downstream
applications and future possibilities.

2 Background and Methodology

Scottish Gaelic is a Celtic language that is closely related to Irish and Manx Gaelic, and more
distantly related to Cornish, Welsh and Breton. Working with Gaelic in an NLP context presents
several challenges. As aforementioned, one is the low availability of high quality data, such as tagged
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corpora. 1 Additionally, word forms in Gaelic are remarkably protean due to its complex morphology
(see Lamb, 2008). For example, its nominal system features initial and terminal mutations that are
sensitive to grammatical categories such as case, number and definiteness. A word like cailleach
’old woman’ may appear as chailleach, caillich, cailliche, chailliche, cailleachan, chailleachan,
cailleachaibh or chailleachaibh, depending on grammatical context. (From the lexicon described
below, we calculate an average surface-form to lemma ratio of 6.84 to 1.) In addition, although
orthographic standards exist (SQA, 2009), few writers adhere to them exclusively ; spelling can be
idiosyncratic. Given this variability, data sparsity is a common problem as we discuss further below.

Our data came from a 21 million word web-crawl of Gaelic text, available as part of the Crúbadán 2

project (Scannell, 2007). The source texts are diverse in register and quality, ranging from bibli-
cal prose to chat room dialogue. Much of the text stems from the Gaelic version of Wikipedia
(gd.wikipedia.org). Scannell took a random sample of sentences from larger sources to lessen any
bias towards them, and extirpated the data of much ambient English. He provided us with a file
of 5.8 million tokens (263,858 lines ; 133,287 unique tokens) and, from this, we generated two
training files : 1) tokenised and 2) tokenised and lemmatised. We built the lemmatiser 3 using a
large, manually constructed lexicon of Scottish Gaelic (Am Faclair Beag : 4 see Patton, 2016). It is
capable of handling common orthographic variations, such as ‘Uidhist’ for ‘Uibhist’ (Eng : ‘Uist’),
although not out-of-dictionary items ; for this study, we replaced the latter with “#IGNORE”. Light
standardisation was applied in the form of automatically de-capitalising wrongly capitalised tokens.

2.1 Word Embedding Method

FIGURE 1 – A typical multi-layer perceptron used for learning vector-space word embeddings.

Figure 1 shows a typical multi-layer perceptron (MLP) with input, hidden and output layers. The
input and output layers have a node for every word in a given vocabulary V , of size |V |. Each of
these layers is fully connected to a single hidden layer of size |H|. The connections are represented
by input and output weight matrices, W and W 0, respectively.

1. But see (Maolalaigh, 2013; Lamb et al., 2016)
2. Crúbadán is Irish for ’crawler’ : see http ://crubadan.org
3. We hope to develop the lemmatiser further and make it available in the future
4. www.faclair.com
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The nodes in the hidden and output layers perform simple functions that aggregate their inputs and
produce a single output. These functions are generally fixed to be common across all nodes in a given
layer (specifically they are often softmax or sigmoid functions). It is the weight matrices that describe
how to emphasize or de-emphasize a given input to a node. By learning the weights that maximise
the likelihood of input/output example pairs, the network can learn inherent structures within a given
dataset. Once the learned weights are fixed, we can present an arbitrary input vector to the network
and compute a corresponding output vector.

As an example, consider the following dataset of word pairs (bi-grams) that describe Scottish
geographical features — lochs (lakes), rivers and bens (mountains) — along with specific names.

D = {loch|lomond, river|ness, ben|lomond, loch|ness, river|tay, ben|vorlich, loch|tay,
river|clyde, ben|more, loch|more, river|forth, ben|nevis}

We may wish to have the network learn to associate a feature with a name or vice-versa. The
vocabulary required to describe this complete set would be :

V = {ben, clyde, forth, loch, lomond,more, ness, nevis, river, tay, vorlich}
Each pair of words can then be described as an input and output vector that is 1 at the position of the
word and 0 otherwise , e.g. for the pair loch|lomond :

loch = {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, lomond = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}
By providing the network with these "one-hot" vectors during training, it can learn the weight
matrices (typically by means of the back-propagation algorithm) that are best able to make a correct
mapping from input to output. As the number of hidden units |H| is typically much smaller than
|V |, it compresses the input through the hidden layer and decompresses it at the output. It is these
compressed vectors that allow us to encode words into a more condensed vector space than that of the
input or output layers. We can then measure the distance between vectors in order to find out how
’close’ words are in a given model. In this example, we may expect to find clyde close to river and
far from ben and loch because there are no such places. However, lomond may be close to both ben
and loch as both places exist, so it can co-occur with either of these words. This is a very simple
example but serves to show how such neural network architectures can be used to perform NLP tasks
such as answering the question "which word comes next ?". Derivatives of similar architectures can
be used to model more complex relationships betweens words.

2.2 Tools and Model Types

In order to train the word embedding models, we used the tool 5 developed by (Ling et al., 2015),
which itself is a modified version of the popular word2vec 6 algorithm (Mikolov et al., 2013a,b,c).
This tool allows word vector representations to be learned from any raw text corpora. Several different
learning schemata have been made available so we chose three of the most popular, as described
briefly below.

Constrained Bag-of-Words (CBOW)
This training schema works by learning to predict a word given a context. For example, if
we consider that we have 5-gram training examples such as “quick brown fox jumps over”,
we can set our input vector to a one-hot representation of “quick brown jumps over” and
the output vector to “fox”. The model will then learn weight matrices that can predict this

5. https ://github.com/wlin12/wang2vec
6. https ://code.google.com/archive/p/word2vec
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relationship.
Skipngram

Skip-gram works as a kind of ‘inverse’ of CBOW – given an input word, we want to predict
the context. The step size for the N-grams used for context can also be altered to provide a
wider context.

Structured skip-gram
Structured skip-gram works in a similar way to the standard skip-gram model, except that we
also provide the relative positions of each context word with respect to the target word. This
allows the model to learn more about the inherent linguistic structure such as the proximity of
adverbs to verbs or adjectives to nouns. As a consequence, the model can potentially better
learn syntactic relationships between words.

The Polyglot project 7 (Al-Rfou et al., 2013) offers a selection of word embedding models that have
been automatically generated for a number of languages, including Scottish Gaelic. While this model
was trained on different data, we were still able to use it for comparisons.

Unless otherwise stated, all of our models were trained with a 5-gram window over 3 iterations of
training with a hidden layer size of 64 (to match Polyglot) or 200. Any words with a frequency of less
than 5 were ignored.

3 Evaluation

3.1 Overview

The evaluation of word embedding models is typically performed in one of the following three ways :
The use of a lexical relationship database

For some well resourced languages such as English, the availability of a well-curated lexical
database of word relationships can be exploited to analyse word embedding models. WordNet
(Miller, 1995) is an example of such a database. In WordNet, words are divided into high
level syntactic classes (noun, verb, adjective, adverb, etc.) which are then grouped into sets
of cognitive synonyms (synsets). Within each synset, words are interlinked according to
conceptual-semantic and lexical relations. Given such a resource, it is possible to evaluate
if a word embedding model is in agreement with the database across many different criteria.
We can, for example, query the database for relations of a given word and then check the
cosine distance between the word and each relation in the embedding model — whereby lower
distance would indicate better agreement with the database (Handler, 2014). Lexical databases
such as WordNet are the product of a substantial cumulative effort involving thousands of
work-hours from expert annotators and, unfortunately, a similar resource does not yet exist for
Scottish Gaelic.

Subjective experiments
The concept of word similarity inherently contains a subjective component, particularly
concerning semantic relationships. Therefore, it is pertinent to consider designing subjective
experiments to evaluate word embedding models. Typical forms of such experiments may
include asking subjects to : rate or rank word groups in order of similarity ; suggest a similar

7. https ://sites.google.com/site/rmyeid/projects/polyglot
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word y given word x ; choose a best match or selection preference, e.g. which noun typically
goes with this verb ? Such queries can also be posed to the word embedding models so that
answers can be compared with human subjects.
There are well-documented issues associated with subjective evaluations such as the above,
one being inadequate sample size. The recent trend of using crowdsourcing technologies
such as Amazon Mechanical Turk (AMT) provides the opportunity to alleviate some of these
issues (Schnabel et al., 2015). AMT allows users to set up web-based experiments whereby
volunteers can participate for a small financial reward. However, this requires a large pool
of potential subjects in order to yield enough respondents. We feel it would be unlikely to
garner a large enough response from Scottish Gaelic speakers by means of AMT due to its
relatively low number of native speakers. However, in the future we may consider smaller
scale subjective experiments that do not utilise crowdsourcing.

Downstream task performance
Instead of evaluating the performance of word embedding models directly, we can also
evaluate how they affect other downstream NLP tasks. For example, word embeddings from a
given model could be used to train a language model or a document classifier. We can then
use evaluation metrics and/or datasets for those tasks. This can often be a more informative
evaluation if the word embedding model is designed for a specific task.

3.2 Syntactic (quantitative)

We were able to derive a quantitative measure of syntactic representation for each model by exploiting
an existing, manually composed lexicon (see Patton, 2016). This lexicon provides highly detailed
information with respect to potential POS tags for a given token, including all valid combinations of
case, gender, number, etc. In total, the lexicon offers 198 possible POS tags, reflecting the relatively
rich morphology of Scottish Gaelic as compared with languages such as English (the Penn Treebank
Project, for example, considers only 36 POS tags).

We do not expect our models to able to distinguish accurately between POS tags at a high level of
granularity, so we considered only the first-order tags of the lexicon : verb, noun and adjective. We
then removed all tokens from each model that did not have a corresponding entry in the lexicon. This
meant that we were able to look at the n-nearest neighbours of a given token within the vector space
of each model and observe any homogeneity among the associated POS tags. By counting how often
the POS tags of a token and its neighbours are in agreement, we are able to quantify the tendency of
each model towards a more syntactically informed clustering.

The syntactic score, S, is formulated as follows :-

S =

P|V |
i=1

Pn
j=1 f(POSi, POSi,j)

|V |n , f(A,B) =

⇢
1 if a = b for any a 2 A, b 2 B
0 otherwise

Here, POSi represents the set of part-of-speech tags for word i, and POSi,j represents the set of
tags for the j-th nearest neighbour to word i according to cosine distance.

Table 1 shows the results for several model types. In order to compare with the Polyglot model, we
used the 2000 most frequent tokens that were in common across all models to calculate the score. We
present results with a hidden-layer size of |H| = 64, which matches the Polyglot model, and also
with a larger value of |H| = 200. In all cases the smaller hidden-layer performs better. This may be
an effect of inherent regularization offered by having fewer parameters to model our dataset which is

Actes de la conférence conjointe JEP-TALN-RECITAL 2016, volume 6 : CLTW

36



TABLE 1 – Agreement of tokens with N-nearest vector neighbours in POS category (Syntactic Score)
Syntactic Score, S

Model |H| = 64 |H| = 200
Polyglot 64.87% -
CBOW 82.11% 82.08%

skipgram 75.06% 73.59%
structskipgram 85.06% 84.32%

still relatively small for this task. If we had more data, then a larger hidden-layer may perform better.

We find that CBOW performs better than skipgram, which is consistent with other findings in the
literature (Mikolov et al., 2013a; Qiu et al., 2014). As expected, adding structural information to
the structskipgram model significantly increases the syntactic score. This is likely due to the extra
information helping the model to learn local grammatical structures that can push words into certain
clusters based on their relative positions. The Polyglot model has the lowest performance. This may
be due to the differences in training data or it could be simply that the model was designed to capture
another type of linguistic relationship. Due to the near-fully automatic method used for training the
minority Polyglot languages the training data may only have gone through generic — rather than
language specific — tokenisation.

It is worth noting, however, that improvement in syntactic modelling may be at the expense of
semantic modelling and a suitable choice of model may depend on the target application. A strong
syntactic model may, in future work, be able to provide supplementary information to tasks such as
part-of-speech tagging for Scottish Gaelic.

3.3 Semantic (qualitative)

As expected from a base of 5.8 million words, the models capture robust semantic and syntactic
relationships between common words. However, they lack the sophisticated nuances reported for
languages with more available text. We begin by discussing the differences between the models,
followed by how well the models encode semantic information. It is worth noting that the empirical
evaluation of word embeddings semantics is at an early stage. Although paradigms exist, as detailed
above (Schnabel et al., 2015), they require significant human resources. Our comments, perforce, are
impressionistic at this point.

We queried the models with terms selected to test their semantic granularity and breadth. Although the
models provide similar returns for very common words, they diverge notably with more semantically
constrained ones. For example, in Table 2, we report the top five returns ranked by cosine similarity
for Uibhist ‘Uist’, a well-known Hebridean island. (NB : Unless noted with ‘*’, the models were
trained on the lemmatised data.)

From this result and others, it would appear that the models are sensitive to different semantic
domains. CBOW is effective at locating the general semantic category ; it groups ‘Uist’ with a variety
of other place-names. Skipgram returns nearby island place-names only, indicating greater specificity.
Structskipgram is similar to skipgram, but includes ‘America’. When considering returns for eaglais
‘church’, we see similar tendencies : CBOW returns other buildings (e.g. hotel, palace, abbey) while
skipgram returns other ecclesiastic nouns (parish, Catholic, abbey, graveyard). Again, structskipgram
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TABLE 2 – Nearest neighbours per model for input query Uibhist ’Uist’ (lemmatised). English
translations are provided for convenience.

CBOW skipgram structskipgram
Aimeireaga ‘America’ Èirisgeigh ‘Eriskay’ Tiriodh‘Tiree’
Èirisgeigh ‘Eriskay’ Barraigh ‘Barra’ Ìle ‘Islay’
Afraga ‘Africa’ Tiriodh ‘Tiree’ Slèite ‘Sleat’
Barraigh ‘Barra’ Slèite ‘Sleat’ Leòdhas ‘Lewis’
Àisia ‘Asia’ Leòdhas ‘Lewis’ Aimeireaga ‘America’

TABLE 3 – Nearest five neighbours for common semantic domains. English translations are provided
for convenience.

TOKEN TRANS. TOKEN TRANS. TOKEN TRANS.
mara* sea (gen)* obh oh (dear) faicinn seeing
beinne hill (gen) Obh Oh (dear) cluinntinn hearing
coille forrest (gen) siuthad go on tuigsinn understanding

gaoithe wind (gen) och oh faireachdain feeling
mòintich moor (gen) ist listen saoilsinn thinking

creige rock (gen) siuthadaibh go on (pl) smuaintinn thinking
dearg red beagan a bit bus bus
geal white cus too many bàta boat
gorm blue tòrr many trama tram
glas gray mòran many trèana train

uaine green barrachd more trèan train
donn brown moran (sic) many plèan plane

(An) Eadailt Italy dithis two people craobhan* trees*
(An) Ruis Russia triùir three people creagan rocks

(An) Ostair Austria ceathrar four people glinn glens
(An) Fhraing France dithist two people lusan plants
(An) Òlaind Holland còignear five people cnuic hills
(An) Spàinn Spain sianar six people rathaidean roads

is intermediate in focus. Unless otherwise stated below, we report results from CBOW, which seemed
to be the most semantically coherent model overall.

As reported in Table 3, the model discriminates common semantic domains such as colours, countries
and modes of transport. 8 Interestingly, it also groups returns based upon the case, number and
grammatical category of the query word. For example, in the case of obh ‘oh (dear)’, the model
returns other interjections. The genitive of the feminine noun muir ‘sea’ prompts other feminine,
genitive nouns associated with physical geography. Quantifiers and quantitative pronouns are also
grouped together, as are psychological verbal-nouns (e.g. creidsinn ‘believing’). When queried,
craobhan ‘trees’ produces other landscape-oriented plural nouns.

These results are promising given the relative paucity of data and the sparsity associated with Gaelic
morphology (see Danso & Lamb, 2014). However, these issues come into sharp relief with other

8. Note : trèana is a variant of trèan as dithist is a variant of dithis
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TABLE 4 – Effects of data sparsity : tokenised vs lemmatised models for clàrsach ‘harp’ (structskipn-
gram reported)

TOKEN TRANS. LEMMA TRANS.
clàrsach harp clàrsach harp

teip tape pìob bagpipe
coimpiutairean computers druma drum

dubhan hook fonn tune
fònaichean-làimhe mobile phone giotàr guitar

tulach hill seinn singing

queries. For example, the noun clàrsach ‘harp’ – when run through the models trained on the
tokenised corpus – produces seemingly unrelated nouns (see Table 4). However, when queried on the
models instantiated from the lemmatised corpus, other musical instruments and terms are returned as
expected. As is well known, lemmatisation is an effective way to handle data sparsity. On the other
hand, it restricts potential searches to root forms and this can be disadvantageous when grammatically
sensitive models are required. Additionally, lemmatisers can introduce their own errors, and exclude
a significant proportion of tokens as ‘out of vocabulary’ if the data is orthographically inconsistent.
Therefore, one must balance potential gains and losses when considering whether to use them.

4 Conclusions

Although the word embedding techniques employed here are already well-represented in NLP
literature, this is the first example of their application and evaluation for Scottish Gaelic. We adapted
existing resources for our task, and trained and evaluated a variety of models on two versions of the
textual data : 1) tokenised and 2) tokenised and lemmatised. Although the resources required for
conventional evaluation approaches were not available, we were able to derive an objective measure of
syntactic modeling capacity and an initial, qualitative assessment of semantic modeling capacity. We
find the performance in each category to be dependent upon the choice of the model, potentially with
an inverse relationship obtaining between the two. In other words, improving syntactic performance
may be at the expense of semantic performance, although additional work is required.

The relative lack of resources for Scottish Gaelic compounded with the language’s morphological
complexity presents significant data sparsity issues. We have shown how these issues can be partially
mitigated by lemmatising the training data a priori. However, the lemmatisation process introduces
its own errors into the overall end-to-end system and may not be suitable for applications requiring
sensitivity to grammatical inflection.

A motivating factor for this study, as aforementioned, is that approaches based upon word embeddings
facilitate the exploitation of raw textual data without the need for manual annotation or intervention.
Therefore, they provide a gateway for dealing with the resource constraints that commonly face
minority languages.

We anticipate applying what we have learned from this study in two ways : 1) improving the model
training by bootstrapping from better-resourced, related languages such as Irish and Welsh (e.g. by
pre-training the model on those languages before fine-training on Scottish Gaelic) and 2) substituting
conventional atomic representations with vector-space representations for a variety of potential
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downstream NLP tasks (e.g. POS tagging, language modelling and machine translation). Vector
space representations are a prerequisite for accessing artificial neural network solutions, which are
increasingly driving state-of-the-art language technology. Therefore, this initial work is promising for
the future of Gaelic NLP.
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