talnarchives

Une archive numérique francophone des articles de recherche en Traitement Automatique de la Langue.

Vers l'entraînement de modèles de reconnaissance automatique de la parole auto-supervisés équitables sans étiquettes démographiques

Laura Alonzo Canul, Benjamin Lecouteux, François Portet

Résumé : Malgré des avancées importantes dans le domaine de la Reconnaissance Automatique de la Parole (RAP), les performances de reconnaissance restent inégales selon les groupes de locuteurs, ce qui pose des problèmes d'équité. Bien qu'il existe des méthodes pour réduire ces inégalités, elles dépendent de ressources externes au signal vocal, telles que des modèles de locuteur (speaker embeddings) ou des étiquettes démographiques textuelles, qui peuvent être indisponibles ou peu fiables. Dans ce travail, nous proposons une méthode pour améliorer l'équité dans la RAP qui ne dépend d'aucune de ces ressources. Notre approche utilise une méthode de clustering non supervisé à partir de représentations acoustiques classiques, auto-supervisées et hybrides. Nos expériences avec CommonV oice 16.1 démontrent que les modèles entraînés sur les clusters découverts améliorent les performances des groupes démographiques désavantagés tout en conservant des performances compétitives et en utilisant deux fois moins de données d'entraînement.

Mots clés : équité, apprentissage auto-supervisé, reconnaissance automatique de la parole