ALF : Un jeu de données d'analogies françaises à grain fin pour l'évaluation de la connaissance lexicale des grands modèles de langue
Alexander Petrov, Antoine Venant, François Lareau, Yves Lepage, Philippe Langlais
Résumé : La révolution apportée par les grands modèles de langue (LLM) provient de l'étonnante fluidité des textes qu'ils génèrent. Cette fluidité soulève une question scientifique essentielle : quelle quantité de connaissance lexicale les LLM capturent-ils réellement afin de produire un langage aussi fluide? Pour y répondre, nous présentons ALF, un jeu de données analogiqes librement accessible et doté de riches informations lexicographiques fondées sur la théorie Sens-Texte. Il comprend 2600 analogies lexicales à grain fin avec lesquelles nous évaluons la capacité lexicale de quatre LLM standards : ChatGPT-4o mini ,Llama3.0-8B ,Llama3.1-8B etQwen2.5-14B . En moyenne, ChatGPT et la série Llama obtiennent une précision aux environs de 55%, tandis que Qwen est juste en dessous du seuil des 60%, ce qui montre qu'ALF pose un défi considérable. Nous identifions en outre certains types d'analogies et de méthodes d'invite qui révèlent des disparités de performance.
Mots clés : Grands modèles de langue, sémantique du langage naturel, ressources et évaluation, théorie Sens-Texte, analogies.