EmoDynamiX : Prédiction de stratégies de dialogue pour le support émotionnel via la modélisation de mélange d'émotions et de la dynamique du discours
Chenwei Wan, Matthieu Labeau, Chloé Clavel
Résumé : Concevoir des systèmes conversationnels dotés d'une intelligence émotionnelle pour apporter du réconfort et des conseils aux personnes en détresse constitue un domaine de recherche particulièrement prometteur. Récemment, grâce aux avancées des grands modèles de langue (LLMs), les agents conversationnels entraînés de bout en bout sans étapes explicites de prédiction de stratégie de dialogue sont devenus plus courants. Cependant, la planification implicite de stratégie manque de transparence, et des études récentes montrent que la préférence inhérente des LLMs pour certaines stratégies socioémotionnelles nuit à la qualité du soutien émotionnel fourni. Pour relever ce défi, nous proposons de dissocier la prédiction de stratégies de la génération du langage et introduisons un nouveau cadre de prédiction de stratégie conversationnelle, EmoDynamiX, qui modélise la dynamique du discours entre les émotions fines du côté de l'utilisateur et les stratégies du système au moyen d'un graphe hétérogène, afin d'améliorer à la fois les performances et la transparence. Les résultats expérimentaux sur deux jeux de données de conversations pour le support émotionnel (ESC) montrent qu'EmoDynamiX surpasse de manière significative les méthodes antérieures à l'état de l'art (avec une meilleure maîtrise et un biais de préférence plus faible). Notre approche offre également une meilleure transparence en permettant de retracer le processus de prise de décision.
Mots clés : Systèmes de dialogue et interactifs, Discours et pragmatique, Analyse des sentiments