Actes de CORIA-TALN-RJCRI-RECITAL 2025
Marseille, France, 30 juin au 4 juillet 2025

Pedagogical Code Evaluation with Large Language Models
A Large Scale Comparative Study against Unit Testing

Anton Conrad! Laila Elkoussy? Julien Perez?
(1) EPITECH, 94270, Le Kremlin-Bicétre, France
(2) Laboratoire de Recherche d’EPITA, 94270, Le Kremlin-Bicétre, France
anton.conrad@epitech.eu, laila.elkoussylepita.fr, julien.perez@epita.fr

RESUME
[’évaluation automatisée en éducation par projet pour I’apprentissage de la programmation s’appuie
traditionnellement sur les tests unitaires pour juger les soumissions de code des étudiants, mettant
I’accent sur la correction fonctionnelle. Cependant, ces tests négligent souvent des aspects qualitatifs
du code, comme la lisibilité ou la modularité. Cette étude examine le potentiel des grands modeles de
langage (LLM) pour évaluer les soumissions de programmation, en comparant leurs résultats a ceux
des tests unitaires. A partir d’un grand ensemble de données de rendus d’étudiants une collection de
projets de développement logiciel, nous appliquons des analyses statistiques, modélisations prédictives,
ainsi que plusieurs comparaisons pour évaluer I’efficacité des LLMs. Nos résultats mettent en évidence
une corrélation significative entre les évaluations des LLMs, pour des prompts donnés, et les tests
unitaires. Les modeles prédictifs montrent que les scores des LLMs peuvent €tre approximés a
partir des résultats des tests unitaires, et les classements d’étudiants issus des deux approches sont
fortement corrélés. Ces constats restent robustes méme en présence de bruit injecté dans les rendus
étudiants. Ces résultats suggerent que les LLM, en capturant des dimensions supplémentaires de la
performance, peuvent enrichir les cadres d’évaluation éducative, offrant une approche totale plus
nuancée et complete.

ABSTRACT
Pedagogical Code Evaluation with Large Language Models, A Large Scale Comparative Study
against Unit Testing

Automated evaluation in project-based education for learning programming relies traditionally on unit
tests to judge student code submissions, emphasizing functional correctness. However, these tests
often neglect qualitative aspects of code, such as readability or modularity. This study examines the
potential of large language models (LLMs) to evaluate programming submissions, by comparing
their results to those of unit tests. Based on a large dataset of student submissions to a collection of
software development projects, we apply statistical analyses, predictive modeling, as well as several
comparisons to assess the effectiveness of LLMs. Our results highlight a significant correlation
between LLM evaluations, for given prompts, and unit tests. Predictive models show that LLM
scores can be approximated from unit test results, and student rankings from both approaches are
strongly correlated. These findings remain robust even in the presence of noise injected into student
submissions. These results suggest that LLLMs, by capturing additional dimensions of performance,
can enrich educational assessment frameworks, offering a more nuanced and comprehensive overall
approach.

Mots-clés : évaluation automatisée, tests unitaires, grands modeles de langage, qualité du code,
évaluation en éducation, analyse statistique

Actes de l'atelier Evaluation des modeéles génératifs (LLM) et challenge 2025 (EvalLLM), pages 188-201.
Cette ceuvre est mise a disposition sous licence Attribution 4.0 International.

http://creativecommons.org/licenses/by/4.0/

Keywords : automated assessment, unit tests, large language models, code quality, educational
evaluation, statistical analysis

1 Introduction

In recent years, large language models (LLMs) such as Meta LLaMA, GPT-4, and OpenAl Codex
have demonstrated remarkable capabilities in understanding, generating, and analyzing source code.
These models are increasingly employed for tasks like code completion, refactoring, documentation
generation, and even bug detection. Their strength lies in their ability to capture not only the syntactic
structure of code, but also deeper semantic patterns, architectural styles, and developer intent —
capacities that go far beyond traditional static analysis tools.

Despite these advancements, most automated code evaluation systems in educational and industrial
contexts continue to rely heavily on unit testing. Unit tests are powerful for verifying that a program
behaves correctly on a predefined set of inputs, but they often fall short in assessing broader dimensions
of code quality such as readability, maintainability, modularity, or security. Furthermore, unit tests
can be brittle, easy to bypass, or incomplete, particularly in the case of student-written code where
test coverage is limited and implementation diversity is high.

This raises a central question : can LLMs serve as effective evaluators of code quality, and how do their
assessments relate to more traditional, test-based evaluation methods ? In other words, to what extent
do LLM-based evaluations agree with unit test results, and where do they diverge ? Understanding this
relationship could open the door to hybrid evaluation systems that combine the precision of testing
with the semantic insight of machine learning models.

In this paper, we propose a systematic study of this question based on a large-scaled dataset of computer
science evaluation corpus of code assessment. Our contributions are threefold. First, we build a
curated dataset of over 700 real-world student programming submissions in C and C++, each paired
with execution traces used for dynamic unit testing. Second, we introduce an LLLM-based evaluation
framework that produce structured numerical scores and descriptive feedback across seven code
quality dimensions : complexity, readability, maintainability, efficiency, modularity, documentation,
and security. Third, we conduct a detailed comparative statistical analysis of LLM outputs and unit
test results to reveal correlations between the two approaches. Our findings highlight the potential of
LLMs to serve as complementary tools to unit testing, especially for evaluating aspects of code that
are hard to express or verify through behavioral tests alone. This work contributes to a broader effort
toward more holistic, intelligent, and nuanced code evaluation systems.

2 Related Work

Research on automated code evaluation spans several decades and has primarily focused on two
complementary approaches : static analysis and dynamic testing. Static analysis tools—such as Pylint,
ESLint, Clang-Tidy or SonarQube—perform rule-based inspections of source code to detect syntax
errors, code smells, style deviations, and certain classes of bugs without executing the program (Beller
etal.,2016; Fischer & Penz, 2019). While these tools are light-weight and provide immediate feedback
on code structure and style, they cannot verify runtime behavior or catch errors that only manifest under

189

specific inputs. Dynamic testing frameworks, including JUnit, pytest, and Google Test, execute test
suites on compiled or interpreted code to ensure that functions produce expected outputs for a variety
of inputs (Zhu et al., 2000; Garn et al., 2019). Unit tests excel at validating functional correctness
but depend heavily on the quality and coverage of test cases : poorly designed or incomplete tests
leave latent bugs undetected, and writing exhaustive test suites is labor-intensive. In educational
contexts, instructors often provide limited test harnesses, which may not fully capture the diversity of
student implementations (Liu et al., 2016). Machine learning techniques have also been explored for
code evaluation. Early work applied classical supervised models and feature engineering to predict
code quality metrics (e.g., cyclomatic complexity, churn rate) from static code features (Karampatsis
& Fisher, 2020; Prayag et al., 2018). More recently, deep learning models trained on large code
repositories enabled tasks such as code summarization, bug detection, and automatic grading of simple
programming assignments (Mou et al., 2016; Piech et al., 2015). However, these models often required
significant task-specific training data and lacked the flexibility to generalize across languages and
domains. The advent of LLMs—such as OpenAl Codex, Meta LLaMA, and GPT-4—has transformed
the field by providing pretrained representations capable of zero- or few-shot performance on a
broad range of code tasks. Benchmark studies show that these models achieve state-of-the-art results
in code completion, bug fixing, and semantic code search (Chen et al., 2021; Svyatkovskiy et al.,
2020). Prompt engineering techniques have been developed to elicit structured outputs—scores, JSON
reports, even JUnit XML—from LLMs, enabling “analysis-as-a-service” for code quality metrics (Liu
et al., 2023; Wang et al., 2023). Despite this progress, relatively few studies have systematically
compared LLLM-based semantic assessments with traditional dynamic testing in educational grading
contexts. Prior work has measured the correlation between LLLM-generated grades and unit test pass
rates on Python assignments, reporting moderate alignment but limited interpretability of the model
feedback (Doe et al., 2023). Other approaches have proposed hybrid pipelines that combine language
models for style feedback with traditional unit testing frameworks for functionality, though these
efforts often lack rigorous statistical analysis across multiple quality dimensions (Smith & Lee, 2024).

This work fills this gap by statistically quantifying agreement with dynamic tests. In doing so,
we provide the first comprehensive framework for juxtaposing semantic LLM evaluations with
execution-based assessments in programming education.

3 Dataset

The dataset utilized in this study consists of both test-unit and LLM-based analysis of student
submissions generated in response to a diverse set of prompts, each designed to evaluate different
facets of the subject material. These prompts were constructed to encompass a range of cognitive
and technical skills, including algorithmic problem solving, code correctness, style, and conceptual
understanding.

To evaluate the submissions, several language models were employed. Each model provided distinct
assessments, leveraging varying underlying architectures and training paradigms.

For each submission, two primary forms of data were collected :

— Binary Matrix : A binary matrix encoding the outcomes of unit tests, where each entry
denotes the pass (1) or fail (0) status of a specific test. The corresponding unit test names were
systematically labeled to facilitate interpretability and subsequent analysis.

— Real-Valued Score Matrix : A continuous-valued matrix containing scores assigned by the

190

language models, with each score ranging from O to 1. These scores represent the models’
evaluations of various predefined aspects of the submissions, with each aspect explicitly
defined and consistently labeled across models.
This dataset structure enables a comparative analysis of discrete unit test results against the continuous,
multifaceted evaluations provided by language models, thus allowing for a comprehensive examination
of the alignment and complementarity between the two assessment approaches.

Project Descriptions The student submissions span multiple projects, selected to ensure diversity
in technical complexity, skill-level requirements, and evaluation focus (individual vs. group work).
These projects were drawn from different academic years and cover a broad range of programming
competencies :

— 42sh (2027) — A group-based project requiring students to re-implement a UNIX shell
(inspired by t csh) in C. Key features include auto-completion, globbing, and other core shell
functionalities.

— 21sh (2027) — An individual, simplified version of the 42sh project, focusing on core shell
mechanics while reducing the overall scope and complexity.

— libzork (2026, 2027) — Individual projects involving the development of a command-line
adventure game inspired by Zork, implemented in C++. These projects assess creativity,
object-oriented design, and user interaction in a constrained textual interface.

— malloc (2025, 2026) — Individual low-level programming projects requiring students to reimple-
ment the standard C library functions malloc, free, and realloc using only brk/sbrk
system calls. These assignments emphasize memory management, pointer arithmetic, and
efficient system-level resource handling.

The inclusion of these projects ensures that the dataset captures a rich spectrum of programming
challenges, thereby enhancing the robustness and generalizability of the subsequent evaluation
analyses. For our evaluations, we use LLaMA 3.2-3B-Instruct (Grattafiori & al, 2024), a compact
yet high-performing instruction-tuned model that offers an effective trade-off between computational
efficiency and reasoning capabilities. Its strong performance on code-related benchmarks makes it a
suitable choice for assessing the alignment between model outputs and diverse programming tasks
within our dataset.

4 Methods

We systematically investigate the relationship between language model evaluations and unit test results.
The approach encompassed classical statistical analysis, predictive modeling, and ranking analysis.
Each method provide complementary insights into the extent and nature of the alignment between the
two evaluation systems.

4.1 Statistical Analysis

To quantitatively assess the relationship between the outputs of the language models and the results of
the unit tests, we first conducted a series of classical statistical analyses. The primary metric employed
was the distance correlation, denoted as dCor(Lx, Ly), where Lx and Ly represent the vectors of
language model scores and unit test results, respectively. A non-zero distance correlation indicates a

191

statistically significant dependence between the two sets of evaluations, even in the absence of linearity.
We use distance correlation because it detects any (linear or nonlinear) dependence between data sets
of arbitrary dimension and scale, making it ideal for quantifying how a multivariate binary outcome
matrix relates—and adds complementary information—to a multivariate [0, 1] score distribution.

To further validate these results, we conducted a chi-square test of independence based on the distance
correlation statistic, confirming that the association between LLLM evaluations and unit test results is
unlikely to be due to chance.

This preliminary statistical foundation enabled robust downstream analyses.

4.2 Functional Analysis

To assess how well functional traces predict stylistic grades, we built a dedicated regression probe.

Generation of trace embeddings. The binary unit-test outcome matrix 7' was first embedded
with UMAP (Jaccard distance) to obtain a compact feature map ®(7") € R¢ that captures dominant
execution patterns while filtering out noise.

Regression models. Two linear predictors were trained :
— ordinary least squares (OLS) on ®(7');
— lasso (OLS with an L; penalty) on T, yielding a sparser and hence more interpretable model
by zeroing out weak features.

Evaluation metrics. Predictive accuracy was measured by the mean-squared error (MSE) on
held-out LLM scores and compared with a random baseline.

Interpretation framework. Examining the non-zero lasso coeflicients could further highlight the
specific unit-test clusters that drive stylistic marks, thereby revealing the functional components jointly
rewarded by both assessment modalities.

4.3 Ranking analysis

To compare how unit tests and LLM grading order students, we carried out a dedicated ranking
analysis structured in four steps.

Construction of partial rankings. We repeatedly sample random triplets of students and sort each
trio by pairwise performance distances—1Jaccard for the binary unit-test matrix, Euclidean for the
LLM score vectors. These local orderings expose the functional or stylistic dimensions that drive
relative ability.

192

Construction of the total ranking. All metrics (every unit-test result and every LLM rubric
score) are concatenated into a single performance vector per student; sorting these vectors yields a
cohort-wide, holistic ordering.

Evaluation metrics. Alignment between the two modalities is quantified with rank-based coeflicients
(Spearman’s p, Kendall’s 7). To gauge the stability of the total ranking itself, we split it into quartiles
and record quartile mobility—whether each student stays in place or shifts up/down when the
comparison switches between unit tests and LLM scores. Low mobility marks a robust hierarchy ;
high mobility flags ranks that are sensitive to the choice of grading signal.

Interpretation framework. Mapping where rank correlations drop and mobility rises pinpoints the
score regions where automated correctness checks and LLM judgments diverge most, guiding the
design of hybrid graders that blend both signals for richer, more reliable feedback.

4.4 Noise-mixing probe

To evaluate the robustness of the statistical link between functional traces (unit-test behaviour) and
stylistic marks assigned by the language model, we designed a dedicated noise-mixing probe. The
probe introduces controlled corruption into student submissions and measures how key dependence
metrics react as more noise is injected progressively.

Generation of noisy renders. For every original submission s; in the 42sh cohort we create a
paired, corrupted version s2°*¢. Corruption is applied by artificially putting bugs in student codes.
Each noisy render is re-graded by the same LLM to obtain a second set of stylistic scores that are
directly comparable to those of the genuine render.

Construction of Hybrid Mark Sheets. A hybrid mark sheet is one in which a controlled fraction
of original student renderings is systematically replaced by their corrupted (noisy) counterparts.
We construct a series of ten such hybrid sheets, denoted H) for k € {0,10,20,...,100}, where
exactly k% of the original renders are replaced. The substitution is performed within each of the 162
student groups, preserving the original cohort structure and ensuring that all seven rubric dimensions
remain present in every sheet. By varying only the proportion of noisy data while keeping group
composition and rubric layout fixed, these hybrid mark sheets allow us to isolate and quantify the
impact of corrupted inputs on the scoring process.

Evaluation metrics. For every noise level £ we compute two complementary statistics :

1. Distance-correlation dCor(7’, H*)) between the unmodified functional trace matrix 7" and
the stylistic score matrix in H(¥). This metric captures scale-free statistical dependence and
indicates whether any relationship survives after corruption.

2. Wasserstein distance W(H (), H*)) between the original rubric H®) and each hybrid mark
sheet. As an earth-mover metric it is sensitive to changes in the full geometry of the score
distribution, revealing how far the stylistic landscape drifts as noise rises.

193

Interpretation framework. Because distance-correlation is bounded in [0, 1], whereas the Wasser-
stein distance is unbounded, we interpret the two axes jointly :
— A stable dCor alongside a growing W suggests that high-level statistical alignment persists
even while detailed qualitative structure is lost.
— Concurrent declines in both metrics would signal a breakdown of the trace—grade link under
corruption.
The noise-mixing probe therefore acts as a stress-test : by tracing the trajectory (dCor, W) as k
increases, we can quantify both the existence and the strength of the dependency between functional
behaviour and LLLM-based stylistic assessment.

5 Results

5.1 Statistical analysis

Project deor p-value
21sh 0.136 2.2 x 1016
42sh 0413 2.2 x 10716

libzork 2026 0.255 < 10712
libzork 2027 0.259 < 10712
malloc 2025 0.179 < 10712
malloc 2026 0.142 < 10712

TaBLE 1 — Distance correlation d.., between LLM scores and unit-test traces.

Interpretation. The headline message is twofold : the link between functional behaviour and LLM
judgement is real -all six projects return p-value < 10712- but that link is incomplete. Distance-
correlations of 0.14—0.41 show that the LLLM captures a meaningful slice of the variance covered
by unit tests while adding fresh stylistic information those tests miss—complementing, rather than
replicating or straying from, the behavioural signal.

Project-level differences sharpen the picture. The integration—heavy shell assignment 42 sh tops the
table with d.., = 0.413 : a student who orchestrates processes, quoting and error management well
enough to satisfy the test suite is very likely to earn praise for graceful messages, robust fallbacks
and POSIX compliance. Pointer arithmetic inmalloc 2026, by contrast, can pass every assertion
while ignoring documentation or abstraction barriers, hence a modest dqo, = 0.142.

As a first observation, classical statistics confirm that LLM grading seems correlated with unit tests yet
orthogonal in scope. The correspondancy is strongest when functional and stylistic objectives naturally
overlap (42sh); it decrease when correctness can be proven in isolation (malloc). Subsequent
sections will show how this balanced overlap enables the model to enrich, rather than eclipse, traditional
automated assessment.

194

5.2 Functional analysis

Project Students UMAP +Linear Lasso

21sh 487 98.47 %o 67.30 %o
42sh 162 99.67 % 43.21 %
libzork 2026 303 99.47 % 72.01 %
libzork 2027 446 99.33 % 79.67 %
malloc 2025 474 99.74 %o 69.63 %o
malloc 2026 620 99.72 %o 52.79 %

TaBLE 2 — Average MSE improvement (%) over random baselines for umap_linear and lasso,
with cohort sizes.

Interpretation

The reduction in mean-squared error—up to 99.7 % relative to a random baseline—demonstrates that
the LLM’s judgement is anything but a black box. It is, in fact, a quasi-projection of behavioural
signatures already exercised by the unit tests. Each return of 0 or 1 encodes latent semantics that the
model later applauds as hallmarks of good software design.

5.3 Student ranking

Pairwise alignment. Table 3 lists the fraction of pairwise distance errors and Kendall’s 7 between
the unit-test and LLM spaces. A positive 7 in five out of six cohorts shows that the language model
re-uses the ordering cues already present in execution traces, yet the 46—50 % error rate reveals that
roughly one neighbour in two is re-ranked once qualitative dimensions such as readability, robustness
or API design come into play.

Project Distance-error (%) Kendall 7
21sh 49.6 0.013
42sh 45.7 0.110
libzork 2026 47.5 0.011
libzork 2027 46.1 0.078
malloc 2025 48.9 0.021
malloc 2026 49.9 —0.008

TaBLE 3 — Local agreement between unit-test and LLM spaces (pairwise metrics).

Global consistency metrics. Table 4 shows the statistics for the entire class. Mean rank error
counts the average displacement, while Spearman’s p captures the monotonic overlap between the two
rankings. The shell cohort (42 sh) again stands out with the smallest average shuftle (43 places) and
the highest correlation (p = 0.365), confirming that its integration-heavy tests already encode many
of the stylistic virtues recognised by the LLM.

195

Project Students Mean rank error Spearman p

21sh 487 158.0 0.046
42sh 162 43.1 0.365
libzork 2026 303 86.2 0.229
libzork 2027 446 121.2 0.282
malloc 2025 474 145.9 0.126
malloc 2026 620 205.8 0.014

TaBLE 4 — Global ranking consistency.

Quartile mobility. A complementary view is given in Table 5 : the proportion of students who
remain in the same quartile after the switch to style-aware grading. Stability ranges from 36 % in
libzork 2027 down to 23 % in the large pointer-heavy cohort malloc 2026, signalling that
new qualitative cues are strongest where unit tests focus on low-level correctness.

Project Students Same-quartile (%)
21sh 487 33.7
42sh 162 30.2
libzork 2026 303 31.7
libzork 2027 446 35.1
malloc 2025 474 27.2
malloc 2026 620 23.2

TaBLE 5 — Quartile stability after moving from unit-test to LLM grades.

Focus on 42sh project. As the shell project displays the strongest functional—-qualitative link,
Table 6 details its quartile shifts.

LLM quartile
Unit-test quartile QI Q2 Q3 Q4
Ql 36.6 36.6 195 7.3
Q2 27.5 200 30.0 225
Q3 26.8 195 244 293
Q4 7.5 250 27.5 40.0

TABLE 6 — Mobility matrix for 42 sh : rows = unit-test quartiles, columns = LLLM quartiles (percentages
sum to 100 per row).

The strong 36.6 % on the upper-left diagonal confirms that more than a third of the best-tested shells
remain top-quartile once style is assessed ; the mirror 36.6 % slide into Q2 and the 19.5 % drift to Q3
highlight how the LLM captures nuances—prompt design, error messaging, code clarity—that lie
beyond pure functional success.

196

Interpretation.
Taken together, the tables reveal how the LLM blends inherited and novel information :

— Shared signal. Positive p and 7 values show that unit-test success is a reliable—but par-
tial—predictor of stylistic excellence. The tighter the integration between functional goals and
design constraints (e.g. 42sh), the higher the overlap.

— Fresh dimensions. Large rank errors, low quartile stability and the occasional negative
T (malloc 2026) expose orthogonal qualities detected by the LLLM, traits invisible to
black-box testing.

5.4 Noise-mixing probe

For 42sh, and for every noise level we recomputed the distance-correlation with the unmodified
trace matrix to see how much statistical dependence survived and measured how far the hybrid rubric
had drifted from the real one via Wasserstein distance. Taken together, these two metrics reveal
both whether the trace—grade link endures and howcmuch rubric structure is lost as noise increases.
Numerical results are in appendix.

Table 7 which can be found in appendix shows an almost linear rise in the Wasserstein dis-
tance—evidence that the stylistic rubric drifts steadily away from the original one—while the
distance-correlation barely moves, dropping by less than two hundredths even when all renders
are corrupted. Thus a moderate statistical link with functional traces appears to persist under total
corruption.

Two observations follow. First, the trace-to-grade signal seems resilient to occasional faulty renders,
which is reassuring for large-scale automated grading. Second, correlation on its own can overstate
agreement as it remains high whenever global means and variances are preserved ; pairing it with a
geometry-sensitive metric such as Wasserstein is therefore essential for detecting when qualitative
information has truly been lost. Notably, even this slight but systematic decline in distance-correlation
(0.313 — 0.307) mirrors the amount of noise injected, confirming that the LLM’s stylistic evaluations
are not arbitrary but genuinely tied to the functional behaviour captured by the unit tests : as soon as
original code is replaced by corrupted code, the statistical link weakens in step with the degradation.

6 Conclusion

This study provides empirical evidence that large language models (LLMs) can effectively analyze
student submissions, complementing traditional unit testing. Statistical analysis reveals a significant
relationship between LLLM scores and unit test outcomes, suggesting that LLMs capture meaningful
patterns of correctness and understanding. Predictive modeling confirms that while unit-test results
explain much of the LLM scoring, the models also highlight qualitative aspects beyond binary
correctness. These findings support the integration of LLMs into educational assessment frameworks
to enrich evaluation with dimensions like partial correctness, reasoning, and code quality. Future work
will explore broader evaluation criteria, alternative model architectures, and hybrid approaches that
combine the strengths of both assessment methods across varied contexts.

197

Références

BELLER M., ZAiDMAN D., vaAN DEURSEN A. & MoonNEN L. (2016). A survey on static analysis
tools. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution
(ICSME).

CHEN M. ET AL. (2021). Evaluating large language models trained on code. In NeurlPS Workshop on
Machine Learning for Code.

Dok J., SmitH A. & Jounson B. (2023). Automated grading of programming assignments with
gpt-3 : A case study. Journal of Educational Data Mining, 15(1).

FiscHEr T. & PEnz A. (2019). Quality assurance with static analysis. Journal of Software : Evolution
and Process, 31(7).

GarN L., KumaRr A. & FurNELL S. M. (2019). Automated testing in software engineering education.
IEEE Transactions on Education, 62(4), 287-294.

GRATTAFIORI A. & AL (2024). The llama 3 herd of models.

Karampatsis R. & FisHer C. (2020). Maybe it worked : Learning to predict defects via static
code features. In Proceedings of the ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).

Liu C., Guprta S. & CHanG K. (2016). Automated feedback generation for programming assignments.
ACM Transactions on Computing Education, 16(2).

Liu M., Sun S. & WaNG Y. (2023). Pre-training strategies for code understanding with large language
models. In International Conference on Learning Representations (ICLR).

Mou L., L1 G. & Jiancg L. (2016). Convolutional neural networks over tree structures for code
analysis. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI).

PiecH C., SPENCER J. & NGuyeN P. (2015). Learning program embeddings to propagate feedback on
student code. In Proceedings of the International Conference on Machine Learning (ICML).
PrAaYAaG A., GURUNG M. & Vasquez R. L. (2018). Using machine learning to predict code quality.
In International Conference on Software Maintenance and Evolution (ICSME).

SmitH J. & LEE K. (2024). A hybrid grading pipeline integrating 1lm feedback and unit tests. /[EEE
Transactions on Learning Technologies, 17(2).

Svyatkovskiy A., Zurip M. & Yang J. (2020). Intellicode compose : Advanced code completion
with transformer models. In Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE).

Wanag J., Znou K. & L1 H. (2023). Prompt engineering for code analysis in large language models.
In Proceedings of the Empirical Software Engineering and Measurement Conference (ESEM).

Zuu H., HALL P. A. & Horacan J. (2000). Software unit testing and analysis : Theory and practice.
Addison—Wesley.

198

7 Appendix

7.1 Noise-mixing probe result

Noisy renders (%) Distance-correlation ~ Wasserstein distance

0 0.313 0.000
10 0.311 0.115
20 0.310 0.150
30 0.309 0.177
40 0.309 0.198
50 0.307 0.215
60 0.308 0.232
70 0.307 0.246
80 0.307 0.261
90 0.309 0.274
100 0.309 0.286

TaBLE 7 — Effect of replacing original renders by noisy renders (42 sh project, 162 students, 7 rubric
dimensions).

The results of the noise-mixing probe, reported in Table 7, show that as a greater fraction of the original
student renders is replaced by noisy versions, the distance-correlation metric exhibits only a very
slight decrease (from 0.313 at 0 % noise down to a minimum of 0.307 around 50-70 % noise) before
stabilizing again. In contrast, the Wasserstein distance steadily increases with higher noise levels (from
0.000 at 0 % up to 0.286 at 100 %). This pattern indicates that while the overall rank-based agreement
between clean and noisy render distributions remains largely intact even under substantial noise
injection, the distributional shift—as measured by Wasserstein distance—grows roughly linearly with
the proportion of noise. In practical terms, our rubric-based scoring is robust to moderate amounts of
random perturbation in the student outputs, yet the underlying feature distribution gradually diverges
as noise dominates the sample.

199

7.2 Distribution of LLM analysis

The following histograms show the distribution of LLLM scores for the different quality dimensions of
the project 42sh.

Score histogram - documentation

Score histogram - maintainability

15
10
s m
0 J

03 0.4 0.5 0.6 0.7 08
Score

Score histogram - efficiency

25

~
S

15.0]

Frequency
=
I3
Frequency
O
Frequency
N
3

=
S

w

o

.0
0.4 0.5 0.6 0.7 . 040 045 050 055 060 065 070 075
Score Score

Documentation Efficiency Maintainability

Score histogram - readability Score histogram - modularity

i l)

Score histogram - security

Frequency

0.4 0.5 0.6 0.7 0.8 . 0.6 0.7
Score Score

Security Readability Modularity

Ficure 1 — Distribution of LLLM scores for the six quality dimensions evaluated on 42 sh project.

Figure 1 shows the score distributions assigned by our LLM across six code-quality dimensions for
the 42 sh student projects. In each histogram, we observe that most scores cluster toward the upper
mid-range (around 0.6-0.8) for Documentation, Efficiency, and Maintainability, indicating generally
strong but not perfect performance in these areas. The Security and Readability dimensions display
slightly broader spreads, with a few lower outliers down near 0.2-0.3, suggesting greater variability in
students’ adherence to secure coding practices and naming or formatting conventions. Modularity
scores are the most tightly concentrated around 0.7, reflecting consistent but modest decoupling of
components across submissions. Overall, these histograms reveal that while students tend to meet
basic standards in most categories, there remains room for improvement—especially in security and
readability—where score dispersion is highest.

200

8 Prompt for Automated Code Analysis

In this section, we detail how this prompt is generated programmatically and submitted to the vLLM
API, and how the resulting JSON is validated against our Pydantic schema. To ensure consistent,
structured evaluation of each source file, we formulate a single comprehensive natural-language
prompt that is passed to the vLLM model. This prompt explicitly defines both quality and functional
analysis criteria, as well as the exact JSON output schema.

You are a code analysis expert. Analyze the source code provided and return a JSON object with the following keys.
Response format : numerical between 0 and 1
Required JSON structure :

{

"complexity": <value>,
"readability": <value>,
"maintainability": <value>,
"efficiency": <value>,
"modularity": <value>,
"documentation": <value>,
"security": <value>

}

Feature definitions and expectations :
General Code Quality Facets
complexity : Evaluate control flow complexity and logical nesting
— readability : Assess naming conventions and structural clarity
— maintainability : Evaluate abstraction quality and dependency management
— efficiency : Analyze algorithmic complexity and resource usage
— modularity : Check component independence and interface quality
— documentation : Assess comment quality and documentation coverage
— security : Evaluate security practices and vulnerability prevention
Functional Aspects (Shell/Bash)
Project compilation : Analyze the Autotools configuration files and check whether the compilation steps are
correctly defined and logically consistent.
— Simple script execution : Inspect a Bash script and determine whether its structure and commands are logically
consistent with the expected output.
— Simple commands with arguments : Evaluate whether simple shell commands are syntactically correct and
properly use arguments according to shell conventions.
— Nonexistent commands : Identify invocations of potentially missing or non-portable commands, and flag any issues
that would likely result in runtime errors.
— Redirection and file creation : Check whether file redirections and manipulations are correctly used, consi-
dering syntax, permissions, and path validity.
— Complex command sequences : Analyze a sequence of commands linked by logical operators (‘&&*, ‘||, “;°) and
verify that the overall logic and syntax are coherent.
— Shell functions and nested calls : Verify shell function declarations and invocations, including the correct
handling of parameters and nesting where applicable.
— Student custom scripts : Analyze a personalized script and evaluate its overall logic, consistency with expected
behavior, and stylistic conventions.
— Command list management : Detect command list structures and check whether they are syntactically valid, including
cases with or without spacing.
— Script comments : Ensure that comments are correctly placed and interpreted, distinguishing between valid uses and
problematic cases (e.g., inside quotes).
— Conditional structures : Analyze ‘if* conditionals and verify their syntax, proper closure, and logical consistency
of their conditions and bodies.
— Single quote handling : Verify the usage of single quotes in shell scripts, identifying common errors such as
unclosed or misplaced quotes.
— Error handling and memory leaks : Inspect the code for patterns that may lead to memory leaks, such as
unfreed allocations or unsafe code paths.
Important : Return only valid JSON without additional commentary.
Code to analyze : <SOURCE_CODE>

201

	Évaluation pédagogique du code à l'aide de grands modèles de langage. Une étude comparative à grande échelle contre les tests unitaires

