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RÉSUMÉ
Des travaux récents ont démontré que les grands modèles de langue (LLMs) sont capables de traiter
des données biomédicales. Cependant, leur déploiement en zéro-shot dans les hôpitaux présente de
nombreux défis. Les modèles sont souvent trop coûteux pour une inférence et un ajustement local ;
leur capacité multilingue est inférieure par rapport à leur performance en anglais ; les ensembles
de données de préentraînement, souvent issus de publications biomédicales, sont trop génériques
pour une performance optimale, compte tenu de la complexité des scénarios cliniques présents dans
les données de santé. Nous abordons ces défis et d’autres encore dans un cas d’usage multilingue
réel à travers le développement d’un pipeline de normalisation de concepts de bout en bout. Son
objectif principal est de convertir l’information issue de dossiers de santé non structurés (multilingues)
en ontologies codifiées, permettant ainsi la détection de concepts au sein de l’historique médical
d’un patient. Dans cet article, nous démontrons quantitativement l’importance de données réelles et
spécifiques au domaine pour des applications cliniques à grande échelle.

ABSTRACT
Biomedical LLMs Pretrained on Non-EHR Data Underperform in Multilingual Real-World
Settings

Recent works have demonstrated that Large Language Models (LLMs) are capable of processing
biomedical data. However, the zero-shot deployment of such models in hospitals presents considerable
challenges. The models are often too expensive for on-site inference and fine-tuning ; their multilingual
capacity is subpar compared to their performance in English ; pretraining datasets, often in the form
of biomedical publications, are too generic for optimal performance, considering the complex clinical
scenarios that exist in healthcare data. We address these and other challenges in a multilingual real-
world use case through the development of an end-to-end concept normalization pipeline. Its main goal
is to convert the information from (multilingual) unstructured health records into codified ontologies,
enabling concept detection within a patient’s medical history. We quantitatively demonstrate the
importance of real-world, domain-specific data for scalable clinical applications.
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1 Introduction

Biomedical data have been valuable for the training of domain-specific Large Language Models
(LLMs). For instance, the PubMed corpus 1, which comprises over 30 million citations from journals
and books, has been used for the pretraining of various LLMs (e.g., BioBERT (Lee et al., 2020)), as
well as the composition of datasets for specific tasks, such as question answering (Jin et al., 2019).
While models trained on clean, well-organised text have demonstrated the potential to outperform
human experts on tasks like summarization (Van Veen et al., 2024), they often struggle with real-
world applications (Krishnamoorthy et al., 2024; Gallifant et al., 2024) such as obtaining Real-World
Evidence (RWE) from Electronic Health Records (EHRs).

There has been substantial effort to compose domain-specific datasets. MIMIC-III (LSAEW & Pollard,
2016), for instance, consists of de-identified patient records and was used for the pretraining of LLMs
such as ClinicalBERT (Huang et al., 2019) and ClinicalT5 (Lehman & Johnson, 2023). However,
there are significant challenges to using such models with real-world data, because such data are
often noisy, grammatically incorrect, domain- and caresite-specific, and dynamic (e.g., drug names
introduced or deprecated over time).

Leveraging the knowledge encoded in LLMs (Singhal et al., 2023) can be crucial for clinical
applications such as concept normalization. This task can be defined as the discovery of relevant
concepts in unstructured, free-form text, and the subsequent mapping of these concepts to a large
set of standardized medical concept names and identifiers in extensive dictionaries such as the
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT 2) or the Unified Medical
Language System (UMLS 3). The resulting databases of standardized evidence can further be used
for predictive analytics and other clinical research (Kraljevic et al., 2021).

To illustrate the difficulty of the concept normalization task, we conducted an experiment involving
GPT-4, 4 which is not a medical LLM per se but can be used as one (Nassiri & Akhloufi, 2024).
Previously, we tested BioGPT (Luo et al., 2022), Llama3-OpenBioLLM-8B (Ankit Pal, 2024), and
BioMistral-7B (Labrak et al., 2024), but none could correctly respond to the following prompt :

List all of the medical concepts (and their respective CUIs) in the following text: “Legs:

no infection or itching, but sensitive. Pitting oedema right > left”. The concepts can be

flat, nested and discontinuous.

We note that response quality varies with prompt wording, and GPT-4’s output can be inconsistent.
From the most accurate predictions presented in Table 1 we confirm the model’s potential as an
end-to-end normalization system. However, we observe three fallacies : (1) the list of the generated
concepts is not complete ; (2) the simplicity of the generated concepts could introduce erroneous
evidence (e.g., "infection" being a linked concept instead of "no infection") ; (3) out of the generated
concept-identifier combinations, only 57.14% were synonymous with the descriptions of the generated
UMLS codes.

To achieve the desired output presented in Table 2, we introduce an in-domain end-to-end (multilin-
gual) concept normalization pipeline. Section 2 tackles the works related to its main components,
while the design and deployment of the pipeline is discussed in section 3. We test this pipeline against

1. pubmed.ncbi.nlm.nih.gov
2. www.snomed.org/what-is-snomed-ct
3. www.nlm.nih.gov/research/umls/index.html
4. openai.com/index/gpt-4
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Concept CUI CUI Description

Legs C0023216 Lower limb structure
Infection C0009450 Infectious disease
Itching C0021147 Incentives
Sensitive C0020555 Hypertrichosis
Pitting oedema C0031039 Pericardial effusion
Right C0205090 Right
Left C0205091 Left

TABLE 1 – The concepts and the CUIs generated by GPT-4 in response to the prompt provided in
Section 1. The CUI descriptions are for the respective CUIs as per SNOMED CT.

EHR (D)NER EL CUI Description

Legs : no
infection or
itching, but
sensitive.
Pitting oedema
right > left.

No infection C2712105 Absence of signs and symptoms of infection
Infection C0745283 Infectious process
No itching C1276050 No sensation of itching
Itching C5700180 Pruritic disorder
Legs sensitive C0578113 Tenderness in lower limb
Pitting oedema right C5230912 Edema of right lower limb
Pitting oedema left C5230911 Edema of left lower limb
Pitting oedema C0333243 Pitting edema
Oedema C0013604 Edema

TABLE 2 – Visualization of an end-to-end concept normalization system. The (D)NER and EL
columns represent the subsequent steps in the pipeline, with the synthetic EHR as the input. The last
column provides standard nominations (preferred names) for each code as per the SNOMED CT
ontology.

open-source models in section 4 and discuss its strengths and limitations in sections 5 and 6.

2 Related Work

2.1 Clinical (Discontinuous) NER

Traditionally, Named Entity Recognition (NER) is treated as labeling a sequence of tokens, embedded
by a pretrained LLM such as BERT (Devlin et al., 2019). Such models often require substantial
task-specific fine-tuning data, which motivates the exploration of the zero- and few-shot capabilities
of LLMs (McInerney et al., 2023; Košprdić et al., 2023).

Although there exist a number of NER approaches on clinical tasks (Verma et al., 2023; Yazdani et al.,
2022), most named entities are flat and contain minimal semantic information. Due to the complexity
of the clinical narrative (Liu et al., 2022), we argue that the most impactful concepts are the most
detailed ones, often consisting of sub-concepts that are not adjacent to one another (discontinuous),
such as "pitting oedema left" or "no itching" presented in Table 2. While Discontinuous NER (DNER)
is explored in the research community (Li et al., 2021), there is less focus on biomedical DNER in
particular.
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Finally, we must highlight that attribute detection of named entities is an important research topic
(Van Es et al., 2023), particularly for clinical data. Certain concepts must be recognized as negated
or hypothetical (e.g., "presumably palpitations" or "diabetes?") to avoid false positives, i.e. patients
being misinterpreted as having (had) the originally negated/hypothetical findings.

2.2 Clinical Entity Linking

Entity Linking (EL) is the task of mapping textual mentions of concepts to codes from a reference
knowledge base. Most approaches to the LLM-based EL, just like the (D)NER task, use transfer
learning, which involves fine-tuning the LLM on domain-specific data (Sung et al., 2020; Liu et al.,
2021a).

Ambiguity in normalization (i.e., multiple ways of referring to the same concept) is a prominent
problem that encompasses the treatment of synonyms in EL (Vretinaris et al., 2021). For instance,
cancer can appear as "systemic malignancy," "metastatic disease" and "secondary cancer," etc. This
issue is a major bottleneck, since current approaches use only the nearest neighbor similarity of
concept embeddings to rank candidates (Liu et al., 2021a). Additionally, as EL often involves the task
of measuring the similarity of input embeddings with often millions of other embeddings in a search
space, and then retrieving the closest n candidates, improving the efficiency of time and memory
usage remains a crucial topic (Ngo et al., 2021).

Further challenges are observed when dealing with abbreviations and acronyms (Agrawal et al., 2022),
as well as multilingual concepts (Remy et al., 2022). In Table 2, we observe that concepts in English
are easily matched, regardless of British or American spelling conventions. However, this is not the
case for similar words across languages, as the largest concept ontology (UMLS) contains 69.6% of
its concepts in English and 10.7% of them in Spanish, while other languages account for a mere 2.9%
or lower (Liu et al., 2021b).

Several recent studies achieve strong EL performance without cross-lingual fine-tuning on language-
specific corpora. For instance, Wajsbürt et al. (Wajsbürt, 2021) report a +20 F1 increase on the
Quaero corpus using only French training data. Cross-lingual benchmarks for clinical entity linking
(Alekseev et al., 2022) demonstrated that targeted, language-specific benchmarks can substantially
boost zero-shot performance across English, Dutch, and French. Earlier, the LREC-MultilingualBio
workshop (Roller et al., 2018) explored clinical text translation via medical ontologies and sentence
templates, highlighting the value of in-language resources.

3 Methodology

In recent years, we observe an increase in the performance of medical LLMs along with an increase
in the amount of data used for model pretraining and the size of medical language models, from the
encoder-only BioBERT (Lee et al., 2020) at 175M parameters to the autoregressive BioGPT (Luo
et al., 2022) at 1.5B parameters, and 540B parameters of the MedPalm model (Singhal et al., 2023).
Oftentimes, state-of-the-art models are not publicly available, and hospitals in Europe are reluctant to
partner and share data with external providers, partly due to ethical and regulatory (Ong et al., 2024),
as well as financial considerations (Dubas-Jakóbczyk et al., 2024).

Our goal was therefore to create a small, scalable pipeline that does not require high-end GPUs for
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on-prem deployment. While we cannot reveal all the details involving the training of the proprietary
pipeline, we can share the steps undertaken for the creation of each component.

3.1 Clinical Data and Annotations

The lack of clear guidelines and consistent annotations can severely harm the performance of LLMs
(Sylolypavan et al., 2023). So, to extract high-quality information from clinical text, we developed
our proprietary annotation scheme. Our detailed annotation guidelines and the raw Dutch EHR
sentences remain confidential to comply with hospital agreements. To support reproducibility, we
provide a high-level overview here and share synthetic examples in the appendix. It encompasses
over two dozen NER labels, including various descriptive modifiers and attributes, such as negations,
being separate NER labels. We equally allow for overlapping (nested) annotations to obtain the most
detailed codified concepts. We also take the potential relationships between the entities into account.
For instance, in the example below we annotate "dependent edema" and "edema" as Disorders (D),
and "left leg" and "leg" as anatomical parts (A) to then further obtain C5230911 5— "Edema of left
lower limb" by combining "edema" with "left leg," and C0577685 6—"Gravitational edema of leg"
by combining "dependent edema" with "leg."

⌈
Dependent

⌈
edema

⌉D
⌉

D of the
⌈

left
⌈

leg
⌉A

⌉
A

The data used for fine-tuning and validation consists of ca. 350 human-annotated patient records
from various clinical subdomains. Upon segmentation and deduplication, the training set accounts
for 10,341 annotated sentences and 112,881 concepts. Of these, 64,595 are unigrams, 28,250 are
bigrams, and 20,036 concepts consist of three or more words. It is important to note that these
concepts are not unique. The high number of unigrams results from the model learning to predict
nested and discontinuous concepts, often using single-word entities like medication units or simple
terms representing multiple concepts (e.g., "no" in Table 2). However, such entities are not forwarded
to the entity linker, as they lack clinical relevance and are unlikely to be linked to a CUI.

3.2 Custom Discontinuous NER (C-DNER)

Building on the Clinical (Discontinuous) NER methods surveyed in Section 2.1, we develop a
Custom Discontinuous NER (C-DNER) component : an encoder–decoder model ( 250 M parameters)
pretrained on generic multilingual text and then fine-tuned on our in-domain Dutch clinical sentences.
Upon fine-tuning, C-DNER returns a list of flat, nested, and discontinuous entity spans in a structured
format (e.g., JSON), rather than token-level BIO tags. The model size was determined with the
consideration for future on-prem deployment, as we strove for a lightweight end-to-end concept
normalization pipeline.

We use transfer learning (using a multilingual base model for task-specific fine-tuning) to enhance
the multilingual potential of our pipeline. This base model that we used for DNER is an open-source
multilingual model pretrained on generic data, and fine-tuned it on hospital data (see subsection
3.1) exclusively in Dutch. While our annotation effort and hospital partnerships have centered on

5. purl.bioontology.org/ontology/SNOMEDCT/816182002
6. purl.bioontology.org/ontology/SNOMEDCT/300981003
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EHR Mantra Quaero E3C
P R F1 P R F1 P R F1 P R F1

Mistral + SapBERT 78.78 59.11 67.54 60.21 32.21 41.97 51.59 21.00 29.85 52.9 50.00 51.41
Mistral + C-EL 78.35 62.14 69.31 66.49 35.01 45.87 54.69 23.44 32.86 54.92 48.62 51.58
C-DNER + SapBERT 77.66 64.22 70.30 73.08 37.54 49.60 49.13 22.47 32.63 64.5 58.99 61.62
C-DNER + C-EL 78.31 70.13 73.99 68.06 36.69 47.68 52.46 24.91 33.78 64.66 59.22 61.82
QuickUMLS 64.94 68.05 66.46 53.69 44.54 48.69 57.46 33.36 42.61 47.77 55.76 51.46

TABLE 3 – Comparative results of end-to-end systems on 4 datasets. EHR : Electronic Health Records
(hospital) data in Dutch. Other open-source datasets are Mantra (in Dutch), Quaero (in French), and
E3C (in English). F1 is arguably the most important score as it integrates both Precision (P) and
Recall (R) in one metric.

Dutch EHRs, we are extending our pipeline to additional languages as new hospital datasets in those
languages become available. We must also mention that this model does not treat attribute extraction
as a separate task but extracts flat, discontinuous and nested concepts that often include the attribute
keyword (e.g., "presumably" or "potentially") inside the larger concept span.

In the next sections we refer to this component as Custom Discontinuous NER (C-DNER).

3.3 Clinical Entity Linking

Once we have used C-DNER to detect the relevant clinical entities, these concept become the input for
our custom Entity Linker (EL). This is an encoder-only model with ca. 278M parameters, fine-tuned
on a dataset that contains roughly 1.5M entries, of which ca. 30% in English (RxNorm 7 extension),
and 70% in Dutch (UMLS 2023, and in-house annotations).

To select the top linking candidate for each given concept (named entity), we use an in-house
multilingual knowledge base containing around 15M references which originate from public UMLS
release, extended with additional vocabularies and translations of SNOMED, and RxNorm. We retrieve
the 10 most similar concepts based on cosine similarity, and then re-sort the generated candidates
based on predefined parameters stored in UMLS for each concept like the rank of vocabulary, the
semantic type and the term preference.

In the next sections we refer to this component as Custom Entity Linker (C-EL).

3.4 Reproducibility Statement

While proprietary patient data cannot be publicly released for privacy reasons, we summarize here
the key finetuning resources : (1) C-DNER finetuning : 10,341 Dutch clinical sentences from 350 de-
identified records. (2) C-EL finetuning : 1.5 M concept–CUI pairs (30 % English RxNorm-extended ;
70 % Dutch UMLS-extended). (3) Notebook and synthetic examples are provided in the appendix.

7. www.nlm.nih.gov/research/umls/rxnorm/index.html
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4 Results

The performance of the proprietary pipeline is compared against two generic, open-source end-to-end
systems. As our baseline, we use QuickUMLS (Soldaini & Goharian, 2016) that operates by the
principle of approximate string matching of the concepts from the UMLS ontology onto the input
data. Due to the aforementioned challenges in the EHR data, we hypothesize that this baseline will
result in lower scores on clinical narratives.

The second pipeline consists of two open-source models for the (D)NER and EL tasks. Out of the
available multilingual LLMs capable of processing medical data in a single-GPU setup, we selected
the 4-bit quantized version of the Mistral 7B Instruct model (Jiang et al., 2023) for the (D)NER
task. We found that even though the model was pretrained solely on English data, it could extract the
necessary information from text in other languages if the prompt itself was composed in English. Our
choice was based on an empirical evaluation of the model’s biomedical counterpart BioMistral-7B
(Labrak et al., 2024), as we found the latter to be more prone to hallucinating in experiments, despite
it being pretrained in multiple languages, among which Dutch and French.

Mistral 7B Instruct also exhibited output inconsistency. To achieve the highest-recall scenario, we
repeated the prompt 10 times, which is notably impractical for production use. For the EL task, we
used the multilingual SapBERT trained with the 2020AB release of the UMLS knowledge base 8.

To obtain objective results, we further performed an ablation study by including the performance
of two other pipelines : C-DNER with SapBERT, and Mistral with C-EL. We emphasize that the
open-source models were not fine-tuned on EHR data to underline the importance of in-domain data,
which renders smaller models competitive for real-world applications. We also do not fine-tune any
of the selected models on the open datasets selected for these experiments to objectively evaluate the
out-of-the-box (OOTB) performance on multilingual biomedical text. With this paper, we include a
notebook in Appendix A that showcases the working of an open-source pipeline.

Further, we selected four datasets in three languages : English, Dutch, and French. First, the EHR
dataset in Dutch consisted of 35 patient records in total, of which 24 and 11 belonged to the oncology
and cardiology domains, respectively. These records were then split into sentences with 1,194 to-be-
normalized concepts in total. We translated 9 some segments presented in Appendix A from Dutch to
English to showcase a sample. As we hypothesized that models fine-tuned on EHR data would be
capable of decent performance on any biomedical data, the second dataset we selected was the Dutch
(test) subset of the Mantra GSC corpus (Kors et al., 2015), annotated for both NER and EL tasks. It
consists of sentences harvested from the European Medicines Agency (EMA) documents that contain
information on marketed medications, with 362 concepts in total. Similarly, the EMA subset of the
Quaero medical corpus (Névéol et al., 2014) lists 1,970 concepts in French. The English test subset
of the E3C corpus (Magnini et al., 2021) consists of 2,389 concepts from a number of clinical records
(which are semantically the closest to our EHR test set in Dutch). All corpora include UMLS CUI
codes to evaluate the EL task. We selected one public corpus per language (Mantra – Dutch, Quaero
– French, E3C – English) alongside our private Dutch EHR set to evaluate robustness across both
linguistic and genre shifts. Limiting each language to a single benchmark avoids overlap between
datasets and allows us to measure how well models trained in one clinical setting generalize to others.

For (D)NER, we did not assess the model’s label assignment performance for two reasons : (a)

8. huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
9. Certain medical concepts, particularly abbreviations and acronyms, might have been mistranslated by DeepL
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annotation schemes differ across datasets ; (b) our primary focus is on the quality of the identified
named entities for code assignment, not their NER labels. The metrics we used for the evaluation of
the end-to-end concept normalization systems are precision, recall and F1. We do not include any
relaxed metrics for this experiment, as we aim to evaluate the (multilingual) OOTB performance of
LLMs on EHR data, rather than their potential. The evaluation scores for all models and datasets are
presented in Table 3.

5 Discussion

We observe that while all pipelines are capable of processing the data in three languages to various
degrees, our custom pipeline outperforms the rest on clinical narratives, namely, the EHR and E3C
datasets. This is a particularly interesting observation, since the E3C test subset is in English, while our
model was fine-tuned only on Dutch data, which highlights the importance of (sub)domain-tailored
solutions. The performance of the pipelines that combine generic and custom LLMs equally demons-
trate the importance of each component in the pipeline. For instance, the highest-scoring pipeline on
the Mantra dataset combines a custom DNER model with the SapBERT model, outperforming the
Mistral + SapBERT pipeline’s F1 by nearly 8 percentage points. We observe a similar performance
on the E3C test set.

With regard to the non-EHR test sets, we equally observe the strong performance of custom compo-
nents. However, we emphasize that the annotations of the Quaero and Mantra datasets were tailored
to the default ranking of the UMLS thesaurus (Névéol et al., 2014; Kors et al., 2015). Therefore, this
explains the strong performance of the QuickUMLS pipeline, particularly on the Quaero dataset, as
opposed to the custom entity linker that was fine-tuned according to the guidelines that specified the
preferred UMLS terms among the many candidate concepts.

The difference in custom annotation and ranking standards is equally reflected in the EHR dataset.
For instance, we observe that Mistral + SapBERT outperform the custom pipeline by a small margin
for the precision metric. We attribute this to Mistral’s tendency to generate simple, flat concepts
(predominantly unigrams) that are further easily mapped to reference codes, while our custom DNER
model produces a hierarchical tree of nested concepts.

This observation is supported by the precision scores for the Quaero test set (74% of which consists
of unigrams), as the DNER + SapBERT pipeline scores lower than Mistral + SapBERT. Additionally,
we must note that these scores are calculated only for a subset of entities that are currently listed
in medical ontologies. Other non-codified entities (e.g., those in languages other than English, full
medication prescriptions and (discontinuous) measurements) are absent from the experiments, as
there are currently no open benchmarks.

Finally, we underline that these results are often solely an indication of performance, rather than a
representative evaluation thereof. Clinical model (pre-)training can essentially never be complete
due to the shifts in the data, such as new treatment trends. But, most importantly, general medical
annotations might not reflect the desired output of normalization systems, as expected in applied
subdomains. Oftentimes, the final evaluation scores of clinical concept normalization pipelines change
as per medical experts’ validation, as they filter or adjust hierarchically the reference knowledge bases
(ontologies), and adjust the ranking of preferred terms. We identify additional challenges related to
the clinical normalization task in the following section.
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6 Challenges

6.1 Discontinuous NER

Human annotations can help us evaluate discontinuous NER internally, but there is a notable lack
of open benchmarks, specifically for the biomedical/clinical (sub)domain(s). Moreover, clinical
ontologies are incomplete, and often lack codes for longer, more detailed concepts.

For instance, not all negated concepts can be standardized, unlike "no infection" and "no itching" in
Table 2. That is why we highlight the importance of equally detecting nested (overlapping) concepts,
for instance, "pitting oedema right," "pitting oedema," and "oedema." If the longest span ("pitting
oedema right") is absent from the ontology of choice, the next concept in the hierarchical structure
("pitting oedema") becomes the next linking candidate.

6.2 Clinical Entity Linking

Evaluation strategies remain a limitation for clinical EL. In most research, for training and evaluation,
entity linkers use either identical or similar datasets, albeit with different degrees of formality (Zhang
et al., 2022).

The lack of subdomain-specific (e.g., oncology, cardiology, etc.) benchmarks and fine-tuning data
is particularly noticeable when trying to navigate synonymous concepts. For instance, SNOMED
CT provides two UMLS concept identifiers for the concept "metastatic neoplasm" — C2939420 10

and C0013930 11, the latter referring to the concept "tumor embolus." However, the latter entry does
not list C2939420 as its potential synonym, which raises the question whether it is a context or
ontology-related phenomenon.

6.3 Multilingualism

The lack of cross-lingual data (training data and evaluation benchmarks) is particularly noticeable in
the clinical domain. Although transfer learning can offer multilingual performance, the generalization
capabilities of LLMs usually increase with the similarities of languages (Pires et al., 2019).

Adding machine-translated (MT) data can enable multilingual capability, preserving original anno-
tations and ensuring accurate translation of medical jargon is challenging. For instance, when we
translate 12 the term "longmetastasen" (a compound noun) from Dutch to English, we observe that the
preferred translation is "lung metastases" (a compound noun) rather than "pulmonary metastases" (an
adjective-noun phrase) as generated within surrounding context "Geen long- en niermetastasen" ("No
pulmonary or renal metastases"). "Lung metastasis" is then potentially linked to the code C0153676 13,
the preferred name of which is "Metastatic malignant neoplasm to lung." While we do not expect
generic MT systems to list "neoplasm" as a synonym to "metastasis," we must remark that clinical
ontologies do. 14

10. purl.bioontology.org/ontology/SNOMEDCT/14799000
11. purl.bioontology.org/ontology/SNOMEDCT/252986008
12. www.deepl.com/en/translator
13. purl.bioontology.org/ontology/SNOMEDCT/94391008
14. Not the term "neoplasm" on its own but with its descriptive modifiers "metastatic," "malignant."
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7 Conclusion

In this paper, we showed that bespoke in-domain solutions are superior to generic (biomedical) LLMs
in their application to real-world data, and specified a number of challenges that hospitals can struggle
with when crafting (multilingual) pipelines specifically applied to the concept normalization task.

We underline the importance of smaller, scalable models, often tailored to certain subdomains (e.g.,
oncology, cardiology, psychiatry, etc.) and hope that the effort on multilingual alignment of biomedical
datasets will continue to democratize research in healthcare worldwide.
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A Appendix

Anamnesis

Increase in abdominal circumference, ankle oedema and weight.

Aorta / A. Pulmonalis The aortic root and aortic ascendens are not dilated.

Discussion : above mentioned patient, known with DM2, hypertension, total AV block
for which DDD pacemaker, subsequently for recovery left ventricular ejection fraction
recovered after CRTP, three-vessel lesion for which 2-2023 stent LAD with residual
lesion prox Cx, CTO RCA with collaterals in which on SPECT 11-2022 old collateral
infarction.

Patient known to have CABG (’4), NSTEMI (’12) wc PCI , AL 1x DES + POBA RCx,
AF (CHA2DS2-VASc 7), PHT (RVSP ca 50mmHg), DM2, HT, COPD G3 (home 1L
O2), OSAS, TIA, CVA, gout, hyperthyreoidia wv strumazol, anaemia with intestinal
angiodysplasia, cholecystectomy, obesity, panic attacks.

ECG on admission Sinus rhythm with 2 :1 AV block with ventricular frequency, 34/min,
intermediate axis, Q in III. QRS 150ms aspecific widening.

No palpable resistances, black, bready discharge to glove.

IVM no reflow papaverine ic with recovery flow and recovery ST-T segments Angioseal
for haemostasis after sheath, removal Vneous line inserted for inotropics.

Note : accepted for PCI proximal LAD 06-2017 : asthma cardiac obv 3VD 2014 : cataract
02-2019 : dec cordis o.b.v. deterioration LVF.

X-thorax on admission substantial corfigure with rounded sinus pleura on right and
possibly some enhanced vascularity.
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EL inference: https://github.com/cambridgeltl/sapbert/blob/main/inference/inference_on_snomed.ipynb

[ ]: !pip install ctransformers

[ ]: from ctransformers import AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModel
import ast
import numpy as np
import torch
from tqdm import tqdm
from scipy.spatial.distance import cdist

0.1 Named Entity Recognition

[ ]: LLM = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.
↪1-GGUF", model_file="mistral-7b-instruct-v0.1.Q4_K_M.gguf",␣
↪model_type="mistral", gpu_layers=50)

[ ]: def generate(prompt, num_tries, llm) -> list:
"""

Prompts LLM to extract medical concepts from clinical note.

Args:
prompt (str): Input prompt
num_tries (int): number of tries
llm (AutoModelForCausalLM): LLM

Returns:
response (list): list of medical concepts

"""
response = []
for _ in range(num_tries):

output = llm(prompt)
try:

output = ast.literal_eval(output)
if isinstance(output, dict) \

1
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and len(output) == 1 \
and 'concepts' in output \
and isinstance(output['concepts'], list) and all(isinstance(x,␣

↪str) for x in output['concepts']):
if len(output['concepts']) > len(response):

response = output['concepts']
except:

continue
return response

[ ]: sample_note_fr = "Jambes : pas d'infection ni de gonflement. Oedème de Quincke␣
↪gauche > droite"

# In this prompt we do not specify that we want flat, nested and discontinuous␣
↪concepts as it confuses the model

prompt = f"""
List all the medical concepts of this text in a json with 'concepts' as key:

{sample_note_fr}

Answer
"""

[ ]: entities = generate(prompt, 10, LLM)
print(entities)

['Jambes', 'infection', 'gonflement', 'Oedème de Quincke', 'gauche', 'droit']

1 Entity Linking
We use the multilingual SapBERT model to embed the extracted entities and measure the similarity
between the entries in a reference ontology.

[ ]: tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/
↪SapBERT-UMLS-2020AB-all-lang-from-XLMR")

model = AutoModel.from_pretrained("cambridgeltl/
↪SapBERT-UMLS-2020AB-all-lang-from-XLMR")

[ ]: # codes as per snomed ct to be verified at http://purl.bioontology.org/ontology/
↪SNOMEDCT/{code}

candidates = [('Edema of left lower limb', '816182002'),
('left', '7771000'),
('right', '24028007'),
('Angioedema', '41291007'),
('Quincke\'s edema', '41291007'),
('Angioneurotic edema', '41291007'),

2
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('Infectious process', '441862004'),
('infection', '441862004'),
('Absence of signs and symptoms of infection', '397680002'),
('No infection', '397680002'),
('swelling', '442672001'),
('edema', '79654002')]

[ ]: all_names = [p[0] for p in candidates]
all_ids = [p[1] for p in candidates]

[ ]: bs = 1
all_reps = []
for i in tqdm(np.arange(0, len(all_names), bs)):

toks = tokenizer.batch_encode_plus(all_names[i:i+bs],
padding="max_length",
max_length=25,
truncation=True,
return_tensors="pt")

output = model(**toks)
cls_rep = output[0][:,0,:]

all_reps.append(cls_rep.cpu().detach().numpy())
all_reps_emb = np.concatenate(all_reps, axis=0)

[ ]: def link(entity, model, tokenizer):
"""

Links medical concepts to entries from a medical ontology.

Args:
entity (str): Clinical named entity extracted in the previous step
model (AutoModel): EL
tokenizer (AutoTokenizer): Tokenizer

Returns:
candidate (str): codified candidate term

"""
query_toks = tokenizer.batch_encode_plus([entity],

padding="max_length",
max_length=25,
truncation=True,
return_tensors="pt")

query_output = model(**query_toks)
query_cls_rep = query_output[0][:,0,:]
dist = cdist(query_cls_rep.cpu().detach().numpy(), all_reps_emb)
nn_index = np.argmin(dist)
candidate = candidates[nn_index]

3
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return candidate

[ ]: for entity in entities:
prediction = link(entity, model, tokenizer)
print(f"{entity}: {prediction}")

Jambes: ('edema', '79654002')
infection: ('infection', '441862004')
gonflement: ('swelling', '442672001')
Oedème de Quincke: ("Quincke's edema", '41291007')
gauche: ('left', '7771000')
droit: ('right', '24028007')
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