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RÉSUMÉ
La structuration automatique de posologie est essentielle pour fiabiliser la médication et permettre
une assistance à la prescription médicale. Les textes de prescriptions en français présentent très
souvent des ambiguïtés, des variabilités syntaxiques, et des expressions colloquiales, ce qui limite
l’efficacité des approches classiques de machine learning. Nous étudions ici l’emploi de Grands
Modèles de Langages (LLM) pour structurer les textes de posologie en comparant des méthodes
fondées sur le prompt-engineering et le fine-tuning de LLM avec un système "pré-LLM" fondé
sur un algorithme de reconnaissance et liaison d’entités nommées (NERL). Nos résultats montrent
que seuls les LLM fine-tunés atteignent la précision du modèle de référence. L’analyse des erreurs
révèle une complémentarité des deux approches : notre NERL permet une structuration plus précise,
mais les LLMs captent plus efficacement les nuances sémantiques. Ainsi, nous proposons le modèle
hybride suivant : faire appel à un LLM en cas de faible confiance en la sortie du NERL (<0.8) selon
notre propre score de confiance. Cette stratégie nous permet d’atteindre une précision de 91% tout
en minimisant le temps de latence. Nos résultats suggèrent que cette approche hybride améliore la
précision de la structuration de posologie tout en limitant le coût computationnel, ce qui en fait une
solution scalable pour une application clinique en conditions réelles.

ABSTRACT
Automatic Posology Structuration : What role for LLMs?
Automatically structuring posology instructions is essential for improving medication safety and
enabling clinical decision support. In French prescriptions, these instructions are often ambiguous,
irregular, or colloquial, limiting the effectiveness of classic ML pipelines. We explore the use of Large
Language Models (LLMs) to convert free-text posologies into structured formats, comparing prompt-
based methods and fine-tuning against a "pre-LLM" system based on Named Entity Recognition
and Linking (NERL). Our results show that while prompting improves performance, only fine-tuned
LLMs match the accuracy of the baseline. Through error analysis, we observe complementary
strengths : NERL offers structural precision, while LLMs better handle semantic nuances. Based on
this, we propose a hybrid pipeline that routes low-confidence cases from NERL (<0.8) to the LLM,
selecting outputs based on confidence scores. This strategy achieves 91% structuration accuracy while
minimizing latency and compute. Our results show that this hybrid approach improves structuration
accuracy while limiting computational cost, offering a scalable solution for real-world clinical use.
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1 Introduction

Structuring posology instructions is essential for enhancing medication safety and enabling clinical
applications, including decision support systems (Elhaddad & Hamam, 2024). In French prescriptions,
posologies are frequently expressed in diverse, ambiguous, and sometimes colloquial language, which
complicates their automatic structuration.

Traditional information extraction pipelines, typically based on Named Entity Recognition (NER)
and rule-based post-processing, offer reliable performance but struggle with linguistic variability
and unexpected formulations (Liang et al., 2019; Gaschi et al., 2023). In contrast, Large Language
Models (LLMs) have recently shown strong potential for medical text understanding (Hu et al., 2024;
Biana et al., 2024), though their application to specialized tasks like posology structuration remains
largely unexplored.

In this work, we investigate the use of LLMs to structure French posology instructions into standardi-
zed formats. We benchmark several open-source and proprietary LLMs using prompt engineering
techniques such as chain-of-thought, few-shot, and contrastive prompting. To further improve perfor-
mance, we apply lightweight fine-tuning on synthetic posology data.

Our results show that while prompt engineering narrows the gap, fine-tuning is necessary for LLMs
to match the performance of our robust internal baseline (based on Named Entity Recognition and
Linking, or NERL). Through detailed error analysis, we highlight complementary strengths between
rule-based systems and LLMs. Finally, we propose a hybrid strategy that leverages model confidence
scores to combine their outputs, offering a practical and efficient solution for real-world deployment.

We summarize our contributions as follows :

1. We present a novel dataset, MEDPOSOSF , for evaluating LLM-based structuration of French
posology instructions, extending beyond standard NER by requiring full structured outputs.

2. We benchmark a range of LLMs, open and proprietary, using prompt engineering and fine-
tuning, and analyze their ability to handle the linguistic variability of real-world prescriptions.

3. We propose a confidence-based hybrid pipeline that combines a rule-based NERL system with
LLMs, achieving improved accuracy (91%) while controlling latency and resource usage.

2 Related Work

Research on structuring clinical texts often begins with simpler tasks such as NER, which serves as a
foundational step for more complex transformations, including the structuring of dosage instructions.

Named Entity Recognition in the Medical Domain NER is a core task in biomedical Natural
Language Processing (NLP), aiming to identify entities such as medications, dosages, symptoms, or
diseases within clinical texts. Over time, several approaches have been developed, each attempting to
overcome the limitations of the previous ones.

Early methods were mainly based on handcrafted rules and domain-specific dictionaries. These
systems typically relied on keyword selection and pattern-matching techniques to extract relevant
terms from text (Krstev et al., 2014). While they offered high precision in specific contexts, their
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recall was often limited, and they lacked adaptability. Moreover, maintaining and updating these
resources required significant effort and deep domain expertise (Chen et al., 2020), making them
difficult to scale across different datasets or languages.

To address these issues, statistical machine learning models like Hidden Markov Models (HMMs)
(Shen et al., 2003) and Conditional Random Fields (CRFs) emerged (He & Wang, 2008; Settles,
2004; Jiang et al., 2011). CRFs, in particular, became widely used for sequence labeling tasks, as they
modeled label dependencies and improved prediction consistency. In the French context, Bigeard et al.
(2015) proposed a hybrid system combining CRFs and handcrafted rules to extract numerical values
from unstructured EHRs. Their work highlighted challenges specific to the French language, such as
ambiguous units and linguistic variability, emphasizing the need for language-specific approaches in
biomedical NLP.

However, they still depended heavily on feature engineering and struggled to capture long-distance
relationships between tokens. A major shift came with the introduction of deep learning. Long
Short-Term Memory (LSTM) networks allowed models to retain information across longer sequences
(Peng & Dredze, 2017; Li et al., 2016). Their bidirectional versions, BiLSTMs, further improved
context modeling by processing text in both forward and backward directions (Wang et al., 2015).
The combination of BiLSTM with CRFs led to the well-known BiLSTM-CRF architecture, which
merged contextual encoding with structured prediction (Huang et al., 2015; Lample et al., 2016).
This hybrid approach became a reference in the field, especially when combined with domain-adapted
embeddings such as those trained on PubMed (e.g., Word2Vec or GloVe). However, the use of static
embeddings still limited the model’s ability to adapt to varying contexts.

More recently, the use of self-attention mechanisms (Vaswani et al., 2023) and transformer-based
architectures has significantly improved performance in NER. Unlike RNNs, self-attention can model
global dependencies in a single pass, making it especially well-suited for capturing the structure of
clinical narratives.

In this context, transformer-based models like BERT (Devlin et al., 2019) and its biomedical
variants have set new standards for medical NER. BioBERT (Lee et al., 2019), pretrained on large
biomedical corpora, ClinicalBERT (Alsentzer et al., 2019), fine-tuned on clinical notes (MIMIC-III),
and SciSpacy (Neumann et al., 2019), built on PubMed articles, have all achieved state-of-the-art
results. These models benefit from contextual embeddings tailored to biomedical language, drastically
reducing the need for manual feature design and improving robustness in handling ambiguous or
complex terms.

Using Large Language Models (LLMs) for Medical NER With the rise of general-purpose Large
Language Models (LLMs) like GPT-3.5 and GPT-4, researchers have started exploring their use
for biomedical NER. Hu et al. (2024) evaluated GPT-3.5 and GPT-4 on two clinical NER tasks :
identifying medical problems, tests, and treatments from clinical notes, and extracting adverse events
from safety reports. Under this setup, GPT-4 performance is close to those of domain-specific models
like BioClinicalBERT.

To improve performance, some researchers have proposed adapting LLMs more explicitly to NER.
For instance, Wang et al. (2023) introduced GPT-NER, a framework that reframes NER as a text
generation task. This allows the model to directly output labeled sequences, rather than relying on
token classification. Their results suggest that this generation-based formulation can be especially
effective in low-resource scenarios, where annotated data is scarce.
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More recently, Biana et al. (2024) presented VANER, a system built on top of LLaMA2. It com-
bines domain-specific instructions and external biomedical knowledge to improve entity recognition.
VANER outperformed previous LLM-based methods and even surpassed some traditional BioNER
baselines on multiple datasets.

In parallel, Naguib et al. (2024) conducted a large-scale evaluation of generative and masked LLMs
for few-shot clinical NER across English, French, and Spanish. Their results show that while prompt-
based models perform well on general NER, they are outperformed in the clinical domain by lighter,
fine-tuned models like BiLSTM-CRF.

Overall, while general-purpose LLMs may not yet consistently outperform specialized models like
BioClinicalBERT, studies show that prompt engineering and hybrid strategies (e.g., adding domain
knowledge) can significantly boost their effectiveness for clinical NER.

Structuring Posology Instructions : Beyond NER While NER focuses on identifying relevant
entities in text, dosage structuring advances further by transforming complex dosage instructions into
structured formats (e.g., JSON), facilitating integration into clinical information systems.

A key milestone in the structuration of medication-related data was the i2b2 Medication Challenge
(Uzuner et al., 2010), which defined subtasks such as drug name, dosage, frequency, and route
extraction. It remains a standard benchmark for evaluating medication information extraction systems,
particularly in English clinical texts.

So far, only a few studies have looked into applying LLMs to tackle related tasks. For instance, Van
et al. (2024) introduced Rx Strategist, a multi-agent LLM pipeline augmented with knowledge graphs
and search strategies to verify prescriptions by analyzing indications, dosages, and potential drug
interactions. This approach achieved performance comparable to that of experienced pharmacists.
Similarly, Isaradech et al. (2024) investigated zero and few-shot NER and text expansion in medication
prescriptions using ChatGPT 3.5 and highlighting the potential of LLMs in handling varied and
ambiguous language in prescriptions.

Silva & Gomes (2025) developed an adaptive LLM-based intelligent medication assistant aimed at
supporting decision making in antidepressant prescriptions, demonstrating the utility of fine-tuned
language models in clinical decision support workflows and emphasizing the importance of structured
dosage information for clinical decision making. Haaker et al. (2025) conducted a comparative
evaluation of five approaches for extracting daily dosages, including parsing techniques, LLMs
(GPT-4o), and the rule-based system RxSig, reporting slightly better performance with GPT-4o than
with RxSig, along with notable differences in sensitivity and computational demands.

These studies highlight the growing role of LLMs in transforming how posology instructions are
interpreted and structured, offering richer and more flexible representations than traditional NER
approaches.

Our work extends this research approach to French prescriptions, marking, to our knowledge, one of
the first efforts to apply LLMs to the structured extraction of posology instructions.
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3 Methodology

3.1 The posology structuration task

We release Medical Posology Structuration in French (MEDPOSOSF ), a posology structuration
test dataset for converting free-text posology instructions into structured JSONs, through which we
normalize elements of the posology instruction like the frequency, the intake dose, or the duration of
the treatment.

We collected sentences containing dosage instructions from a private set of French scanned typewritten
prescriptions. Following Gaschi et al. (2023), those prescriptions were passed through an Optical
Character Recognition (OCR) system 1. Only the sentences containing posology instructions and no
other patient information were kept, ensuring anonymization of the data 2.

Those sentences were then manually annotated by medical experts. Contrary to simpler structuration
tasks like NER, the task is not a classification, but is more akin to a text-to-JSON conversion. Thus,
instead of tagging spans of text with relevant labels, annotators were asked to fill a form for each
relevant spans of text (e.g. "1 ampoule tous les 2 mois pendant 4 mois"), leading to a JSON with the
following important fields (The complete schema is shown in Appendix B) 3 :

— quantity_and_rate : dict, contains the amount of intake units to take at once
— value : float, the amount of unit to take at once (1.0 in our example)
— unit : str (optional), the type of unit ("ampoule(s)")
— code : str (optional), the SNOMED code for the unit ("413516001")

— timing : dict, contains the timing with which each intake must take place
— frequency : int, an integer for the number of intake for the given period (1)
— period : int, the number of period_unit to observe before repeating the intake (2)
— period_unit : str, the time unit used for measuring the period between intakes

("month")

Our evaluation metric is a query-wise exact accuracy, which measures the proportion of queries for
which each field is correctly predicted 4. We publicly release our manually annotated dataset and code
for evaluating the predictions of any model 5.

3.2 Baseline : an internal pre-LLM system

We design our baseline as a hybrid system that combines transformer-based and rule-based NER
with embedding-based Named Entity Linking (NEL). The NER module consists of a fine-tuned
microsoft/mdeberta-v3-base (He et al., 2023) model. It is trained on an internal manually

1. https://cloud.google.com/vision
2. To ensure anonymization, we manually checked each sentence in the final dataset and removed any that contained

personal info (name, social security number, doctor ID)
3. Annotations were performed by two annotators using an internally-developped tool that converts the output of an

user-friendly form into JSON.
4. SNOMED codes were not considered in the evaluation, although some LLMs are sometimes able to find the right code,

we leave this named entity linking step for future work.
5. https://github.com/posos-tech/posology-structuration-task
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annotated dataset 6, which we unfortunately cannot release due to issues of confidentiality. This
dataset contains 1,699 sentences annotated with 5,845 entities (Full list of entities in Appendix D).

Some entity types are rare, for example, there are only 19 entities of type TIME_OF_DAY (like "à
08h") in the entire training set. This requires some form of data augmentation. We thus define a set of
rules to generate synthetic training examples that include those rarer entities.

For some of the entities detected with the NER, we need to link them to relevant concepts using
NEL. We link recognized dose units to normalized concepts from the SNOMED CT terminology.
Our linking pipeline embeds candidate concepts using FastText (Joulin et al., 2016) word vectors
aggregated into sentence-level representations. We retrieve the closest concepts based on cosine
similarity.

However, extracting and linking entities is not sufficient to produce an arborescent JSON describing
the posology. An internal rule-based post-processing system allows to combine the detected entities
into a structured JSON. We choose not to disclose our entire set of rules, as they were developped
internally and iteratively across several years. A typical example of such rules is that, in "3 cp le matin"
two entities are initially detected : a dose (3 cp) and an entity of type WHEN (le matin). The rule-based
system will then combine them into a single JSON object with the quantity_and_rate filled
with the information from the dose and the frequency (1), the period (1) and the period_unit
(day) are inferred from the WHEN entity.

3.3 Confidence score

Following the method proposed by Lahoti et al. (2021), we crafted a confidence score aimed to
assess risk, defined by three kinds of uncertainties : model, aleatoric and epistemic. Considering
the structuration model, i.e. the NERL baseline, as a black-box classification model, we trained an
ensemble of Gradient Boosted classifiers as a meta-learner to estimate these uncertainties. Each
model is a regression tree that outputs a score for the correct or incorrect label. The final prediction is
obtained by averaging the outputs of all models in the ensemble. The different uncertainties were
evaluated as follow :

— Model uncertainty : out of NERL model information, estimated using the final model score.
— Aleatoric uncertainty : variability of data points, and noise caused in our case by mistakes

of OCR for example, evaluated by averaging the entropy of each smaller model.
— Epistemic uncertainty : systematic gaps in the training samples, it mostly arises when

outliers are present within the training dataset. It was deduced from the total uncertainty,
estimated from the entropy of the model outputs.

We trained the confidence score on two datasets with a total of 600 sentences : each sentence is
paired with the JSON output produced by our NERL baseline and manually annotated as "correct" or
"incorrect" according to the ability of our model to correctly structure them. The confidence score
model is then trained, using the sentence and the JSON output as features, to predict the correctness
of the output.

6. For the annotation process, annotators used an internally developed tool that allows them to select relevant textual
information and assign the appropriate tags.
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3.4 LLM approaches

While the aforementionned pre-LLM system is effective for structuring posology instructions (see
results), it is limited by its reliance on handcrafted rules, the need for extensive domain knowledge,
and requires a training dataset for the NER. To address these limitations, we explore the use of Large
Language Models (LLMs) to automate the structuration process, without using any handcrafted rules
or training dataset other than a synthetic one.

Prompt engineering

We explore the integration of Large Language Models (LLMs) to improve the pososlogy structuration
task, focusing on prompt engineering as an initial approach. Our experiments involve several open-
source models, such as LLaMa 3.2 (Grattafiori et al., 2024), Gemma 2 (Team et al., 2024b), Mistral
7B (Albert et al., 2023), and Phi 3.5 (Abdin et al., 2024) ; as well as proprietary models, particularly
the Gemini family (Team et al., 2024a), deployed via Vertex AI.

To optimize model behavior, we employ several prompting strategies : chain-of-thought promp-
ting (Wei et al., 2022) which encourages a step-by-step reasoning ; few-shot prompting (Brown et al.,
2020) to embed structured examples in the prompt ; reformulation instructions (Deng et al., 2023)
which direct the model to clarify or rephrase the posology instruction before structuring it ; contrastive
prompting (Chia et al., 2023) which includes examples of common errors to help the model avoid
frequent pitfalls. The prompts used are described in detail in Appendix E.

Fine-tuning with synthetic data

To further improve LLM performance, we apply lightweight fine-tuning techniques such as adapter-
based methods (Houlsby et al., 2019). Given the scarcity of annotated prescription data, we construct
a synthetic dataset of over 1,600 posologies, structured using our NERL baseline, alleviating the need
for any manual annotation 7.

From this set, approximately 1,200 are filtered out based on cofidence score (>0.7). Despite being
synthetic, the dataset reflects the structural and linguistic diversity of real-world posologies and serves
as an effective foundation for task-specific model tuning (Gunasekar et al., 2023).

4 Experiments and Results

4.1 Models comparison

Our first objective is to select a suitable LLM for the posology structuration task. We run initial
baseline tests using simple prompts across open-source (LLaMA 3.2 8, Gemma 2 9, Mistral 7B 10,

7. Although the baseline itself required annotated data to function
8. 3.21B parameters, Q4_K_M quatisation
9. 9.24B paramerters, Q4_0 quatisation

10. 7.25B parameters, Q4_0 quatisation
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Phi 3.5 11) and closed-source (Gemini family) models, evaluating both their accuracy and inference
latency 12 on manually curated data set (Table 1).

Model Average Accuracy Average Latency
Vertex AI - Gemini 1.0 Pro 38% 14 min
Vertex AI - Gemini 1.5 Pro 47% 11 min
Vertex AI - Gemini 1.5 Flash 42% 3 min
Ollama - Gemma 2 51% 20 min
Ollama - Mistral 7 28% 13 min
Ollama - Phi 3.5 22% 9 min
Ollama - LLaMA 3.2 6% 9 min

TABLE 1 – Preliminary evaluation of LLMs on the posology structuration task. The latency is
measured across the whole test dataset. Due to the closed-source nature of Gemini models Ollama’s
and the NERL’s latency is not directly comparable with Vertex AI, as it does not run on the same
hardware. However, the latency still provides a useful indication of what is possible with readily
available models and hardware.

From these initial results, Gemini 1.5 Flash emerges as the most promising candidate, offering a
good balance between performance and latency. While Gemini 1.5 Pro and Gemma 2 are slightly
outperforming in terms of accuracy, their significantly higher inference time makes them impractical
for iterative experimentation.

Once the model is selected, we proceed with iterative prompt refinement. Importantly, we observe that
prompt engineering is highly model-specific ; optimized prompts used for one LLM do not transfer
effectively to others. Therefore, we proceed with development and evaluation of prompt strategies
exclusively for Gemini 1.5 Flash 13. This is consistent with previous literature, which shows that
engineered prompts often do not transfer well across different models (Ye et al., 2024).

We begin with relatively simple prompting techniques 14, including direct task instructions, chain-of-
thought reasoning, and few-shot examples embedded in the prompt. While these approaches improve
performance, they do not fully resolve the inherent ambiguities of medical language. To mitigate
this, we introduce rephrase-and-respond instructions, guiding the model to first reformulate the input
to clarify intent before attempting to structure it. Finally, we apply contrastive prompting, where
examples of incorrect outputs and common mistakes were explicitly included to guide the model
away from frequent failure patterns.

All prompts are executed with the temperature set to zero, ensuring deterministic and consistent
output generation. We empirically observed that setting the temperature to zero led to improved
accuracy, as shown in Table 2. This is consistent with previous findings that lower temperatures have
a tendency to produce more repetitive and less diverse outputs, which resemble the training data more
closely (Renze, 2024).

Using this fully engineered prompt set, Gemini 1.5 Flash achieves an accuracy of 73%. However,
despite the gains, prompt engineering alone still falls short of our NERL baseline. The results motivate

11. 3.82B parameters, Q4_0 quatisation
12. Except for Gemini models which run on Google servers, all tests for Ollama models were performed on the same GPU
13. Specifically, we evaluated the final prompt optimized for Gemini 1.5 Flash on other models. Gemini 1.5 Pro, despite

outperforming Flash on the initial prompt, achieved 8% lower accuracy than Flash when using the Flash-optimized version.
14. Further details on prompt design are provided in Appendix A
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top k top p temperature Average Accuracy
40 0.80 2.0 68.75
35 0.90 1.5 67.19
30 0.85 1.2 68.75
15 0.90 1.0 68.75
5 0.97 0.7 71.88
5 1.00 0.1 73.00
- - 0.0 73.00

TABLE 2 – Evaluation of different parameter settings for the Gemini 1.5 Flash model. The parameters
are : top k (number of top tokens to consider), top p (nucleus sampling threshold), and temperature
(controls randomness in output generation).

the application of fine-tuning.

We fine-tune the model with PEFT method available throuth Vertex AI using a filtered synthetic
training dataset of 1 200 high-confidence outputs generated by our NERL pipeline. The tuning is
performed in two stages. First, the model is trained on plain input-output pairs, resulting in an accuracy
of 79%. In the second stage, we include a partial version of the final prompt within the training inputs :
general task instructions, a chain-of-thought example, and a list of mistakes to avoid. This alignment
leads to a further improvement, reaching 84% accuracy and approaching our NERL baseline. Final
results are shown in Table 3.

Model Configuration Average Accuracy Average Latency
Gemini 1.5 Flash (prompt-engineered) 73% 3 min
Gemini 1.5 Flash (fine-tuned) 79% 3 min
Gemini 1.5 Flash (prompt-engineered + fine-tuned) 84% 3 min
NERL baseline 85% 1 min

TABLE 3 – Final evaluation of LLMs on the posology structuration task. Please note that the average
latency for the NERL baseline is not directly comparable to the LLMs, as it does not run on the same
hardware.

In summary, our experiments demonstrate that while prompt engineering can significantly improve
LLM performance on complex, ambiguous tasks like posology structuration, only model-specific
fine-tuning enables LLMs to reach the performance levels of a robust baseline.

4.2 Error analysis

To compare the performance of NERL and Gemini 1.5 Flash we conduct an error analysis. Both
models demonstrate high performance in structuring posologies, but diverge in their handling of
linguistic complexity and ambiguity.

NERL, for instance, struggles with implicit or colloquial conditional expressions. For example, it fails
to extract si besoin from Lactulose 10 g : si besoin, and similarly misses si douleurs as a conditional
intake trigger. It also shows weakness in detecting and normalizing OCR errors, for example, sachet
in 1 sach dose.... Additionally, unit recognition is sometimes inconsistent, particularly when syntaxis
is atypical, as seen in Comprimé : 2 à 20 :00, where comprimé was not extracted.
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In contrast, Gemini tends to add unnecessary abstractions, like extracting period : 1 and period unit :
day from prendre 1 comprimé 3 fois par 24 heures or refomatting, like transforming 15/11/2022
into 2022/11/15. It also has difficulty parsing multi-timepoint instruction : in 2 gélules au cours ou
immédiatement après les repas, it confuses overlapping timing cues (like during the meal vs. after a
meal) and returns only one. Gemini also misinterpretes dose allocation across multiple intake times :
Prendre 2 gélules le matin et le soir... was interpreted as 2 capsules once daily, instead of once in the
morning and once in the evening.

In conclusion, while NERL and Gemini 1.5 Flash each show specific weaknesses, they also demons-
trate complementary strengths. NERL favors precision and structural consistency, whereas Gemini
excels in semantic interpretation and normalization. Used together, these models could provide a
more robust and comprehensive solution for structuring posology task.

4.3 Towards an LLM-based hybrid system

Rather than replacing NERL, we propose a hybrid approach based on confidence score. The workflow
we propose begins with processing the input document using NERL. If NERL’s confidence score falls
below a defined threshold (<0.8), the task is delegated to the LLM for supplementary analysis. The
final output is selected based on the highest confidence score between the two systems.

This hybrid strategy leverages the complementary strengths of NERL and the LLM. Moreover,
the approach minimizes latency and computational overhead by limiting LLM invocation to low-
confidence cases. Results are shown in Table 4, and demonstrate that the hybrid system outperforms
both NERL and LLM alone, achieving an average accuracy of 91%.

Model Configuration Average Accuracy
Gemini 1.5 Flash (fine-tuned) 84%
NERL baseline 85%
Hybrid system (LLM + NERL) 91%

TABLE 4 – Final evaluation of the hybrid system on the posology structuration task.

5 Conclusion

This work introduces MEDPOSOSF , a novel dataset for evaluating the LLMs ability to convert raw
textual French posology instructions into a structured format. This task is more challenging than
standard NER, as it requires to generate a full JSON output rather than simply tagging spans of text.

To address the limitations of both our NERL baseline and the LLMs on this task, we proposed a hybrid
strategy that leverages a surrogate confidence score to combine their outputs, offering a practical and
efficient solution for real-world deployment.

Our results also suggest that proprietary LLMs hosted on cloud platforms allow prompt engineering
and fine-tuning with less computational resources and less engineering and they perform better than
open-source models at comparable levels of latency. However, with more resources than for this
work, future work could explore the possibility of using smaller LLMs with domain-specific data,
like BioMistral (Labrak et al., 2024), and with guided generation (Willard & Louf, 2023) to improve
the performance of open-source models.
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B Complete structuration schema

— as_needed : dict (optional), contains information about whether the drug must be taken
only under certain condition (e.g. if "as needed during headache" is written)
— as_needed : bool, True if the drug must be taken under certain condition
— as_needed_for : str, the specific condition (e.g. "during headache", "if needed", "if

pain")
— designation : str, the minimal string to which the dosage corresponds, it does not contain

the whole instruction, but rather the unit and the type of intake (e.g. "1 comprimé"), this
allows to differentiate several posology instructions when needed

— quantity_and_rate : dict, contains the amount of intake units to take at once
— value : float, the amount of unit to take at once
— unit : str (optional), the type of unit (e.g. "comprimé(s)", "ampoule(s)", "sachet(s)",

"cmp", "cp", "sach", "amp", etc.)
— code : str (optional), the SNOMED code for the unit

— max_dose_per_period : dict (optional), contains information about a potential maxi-
mum dosing
— dose : int, the maximum amount of units
— dose_unit : str (optional), the type of unit
— code : str (optional), the SNOMED code of the dose_unit

— timing : dict, contains the timing with which each intake must take place
— bounds_duration : dict (optional), the duration during which the treatment occurs

— max_value : float (optional), the maximum amount of time units the treatment must
last

— value : float, the amount of time units the treatment must last (if max_value is not
null, value reperesent the minimal value)

— unit : str, the unit for measuring the treatment duration ("hours", "day", "week", or
"month")

— bounds_period : dict (optional), an alternative to bounds_duration where exact dates
have been provided
— start_date : str, start date in format YYYY/MM/DD
— end_date : str, end date in format YYYY/MM/DD

— day_of_week : list (optional), list of weekday diminutives when the treatment must be
taken (e.g. "mon" or "sat")

— frequency : int, an integer for the number of intake for the given period (e.g. the 2 in
"twice a day")
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— frequency_max : int (optional), an integer for the maximum amount fo intake for the
given period (frequency is then the minimum)

— number_repeats_allows : int (optional), the number of times the treatment can be
renewed

— offset : str (optional), substring extracted from the query that indicates what is the
offset of the intake ("30 minutes" in "30 minutes before meals")

— period : int, the number of period_unit to observe before repeating the intake (6 in "3
tablets every 6 hours")

— period_unit : str, the time unit used for measuring the period between intakes ("hours"
in "3 tablets every 6 hours")

— sequence : int (optional), when several posology instructions are given, sequence
indicates their order

— time_of_day : list (optional), indicates precise intake hours in the format HH :mm :ss.
time_of_day and when cannot be simultanously non-empty

— when : list (optional), indicates the moment of intake relative to the patient activity (e.g.
"AC" for before a meal), the list of possible values is given in the FHIR standard 15

C Dataset statistics

Statistics
Number of queries 129
Number of posology instructions 131
Minimum number of tokens 2
Median number of tokens 9
Maximum number of tokens 29
Minimum number of occurrences of a JSON field 1
Median number of occurrences of a JSON field 69
Maximum number of occurrences of a JSON field 131

TABLE 5 – Statistics of the MEDPOSOSF dataset.

D NER training dataset

E Prompt details

1. Chain of thought examples

here is an exmaple 1.1 how to proceed.

sentence : ampoute , 1 fois par trimestre besoin

step by step reasonning :

15. https://hl7.org/fhir/R4/valueset-event-timing.html
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Entity types Number Example
BOUNDS 647 pendant 7 jours
DOSE 1,188 2cp
DRUG 1,007 EFFICORT Hydrophile
FORM 574 CPR
FREQUENCY 213 3 fois
NUMBER_REPEATS 20 1 Boîte.a renouveler
PERIOD 555 par jour
REASON 143 SI BESOIN
STRENGTH 721 200 mg
TIME_OF_DAY 19 à 08h
WHEN 723 le matin

TABLE 6 – NER entities present in the training dataset

0. Check spelling, remove punctuation and make the sentence more explicit : ampoute , 1 fois
par trimestre besoin most likely means 1 ampoule 1 fois par trimestre si
besoin

1. Check whether there are several entities. Here, ampoute (misspelled) refers to only one entity.

2. I see that the sentence refers to medicines, so I can associate category with MEDICATION.

3. Since there is only one entity, the designation can be associated with the value of the entire
sentence : ampoute 1 fois par trimestre besoin

4. We can see that the sentence talks about ampoute (misspelled), 1 time per trimester, so it’s an
entity_type to be associated with the QUANTITY value.

5. The quantity_and_rate will contain the values type associated with DOSE (one ampoule
corresponds to one dose of product), unit associated with ampoule(s) and value associated with
1 (because once per quarter in the sentence). There are no elements relating to the maximum value,
so there’s no need to set max_value.

6. The timing section. The value of bounds_duration_text will be equal to 1 fois par
trimestre, which means that the frequency will be equal to 1, the period to 3 and the
period_unit to month because a quarter is equal to 3 months.

7. Concerning the as_needed section, as it writes besoin which probably means si besoin,
we’ll set the as_needed value to True and the as_needed_for value to besoin.

The result is the following YAML format :

entities:
- a_needed:

as_needed: true
as_needed_for: besoin

category: MEDICATION
designation: ampoute 1 fois par trimestre besoin
entity_type: QUANTITY
quantity_and_rate:
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type: DOSE
unit: ampoule(s)
value: 1

timing:
bounds_duration_text: ’’
frequency: 1
frequency_texts:
- 1 fois par trimestre
period: 3
period_unit: month

posology_string: ampoute 1 fois par trimestre besoin

2. Few-shot examples

here is an exmaple 2.1 how to proceed.

sentence : 0.5 à 1 cp au coucher si besoin (1 boite AR)

entities:
- category: MEDICATION

designation: 0.5 a 1 cp au coucher si besoin
as_needed:
as_needed: true
as_needed_for: si besoin

entity_type: QUANTITY
quantity_and_rate:
max_value: 1.0
type: DOSE
unit: comprimé(s)
value: 0.5

timing:
bounds_duration_text: ’’
frequency: 1
frequency_texts:
- au coucher
period: 1
period_unit: day
when:
- HS

posology_string: 0.5 à 1 cp au coucher si besoin

3. Mistakes to avoid

If a time of day is specified in hours, don’t forget to specify it in the time_of_day field (even if
the when field is also filled)

Be careful with time of intake : le matin 30 minutes avant le repas is not two dif-
ferent time of day for in the morning and before meal (MORN, AC) but it represents a single one for
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taking the medication before the meal of the morning (ACM)

For time of days that fit in the when field, do not mistake meals (like ACM for breakfast and CD for
lunch) with periods of the day (like MORN for morning and NOON for mid-day), you must use a meal
time only if the meal is explicitly described

Be careful with as_needed field, it should include as_needed equals True and
as_needed_for referencing condition, if you detect relevant condition in text for the entity in
question (si besoin, si migraine, si angoisse). as_needed field should not constitute
a separate entity.
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